使用pheatmap包绘制热图

作者: Davey1220 | 来源:发表于2018-10-03 19:58 被阅读9497次

    加载所需R包

    library(pheatmap)
    

    设置工作路径

    setwd("/Users/Davey/Desktop/VennDiagram/")
    # 清除当前环境中的变量
    rm(list=ls())
    

    构建测试数据集

    test = matrix(rnorm(200), 20, 10)
    test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3
    test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
    test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
    colnames(test) = paste("Test", 1:10, sep = "")
    rownames(test) = paste("Gene", 1:20, sep = "")
    head(test)
    
    ##          Test1      Test2    Test3      Test4    Test5       Test6
    ## Gene1 4.064973  0.7535271 3.024070 -2.1294440 4.407945 -0.35677097
    ## Gene2 2.360043  1.6974946 3.273425 -2.3341406 3.839523  0.16982944
    ## Gene3 3.253465 -0.9011582 1.716257 -0.2294471 4.636610 -0.24520382
    ## Gene4 4.070226 -0.6191941 3.734437  1.9348314 4.426825 -0.17730957
    ## Gene5 3.821414  0.5584876 1.871479 -0.2784607 2.633761  0.01332901
    ## Gene6 3.012469  0.1738285 3.652423 -2.0083435 4.124951 -0.67899611
    ##          Test7      Test8    Test9        Test10
    ## Gene1 3.602764  1.2903843 2.044119  1.826159e+00
    ## Gene2 3.083160  0.2642755 2.855381  1.988289e-01
    ## Gene3 3.417809 -0.1362079 3.858884 -8.390304e-01
    ## Gene4 2.911934  0.4299550 4.128398 -3.011521e+00
    ## Gene5 2.651758 -1.6884728 3.001079  1.861780e+00
    ## Gene6 1.934270  0.5811059 2.297763  6.878644e-05
    
    # 默认绘图
    pheatmap(test)
    
    image.png
    # scale = "row"参数对行进行归一化
    pheatmap(test, scale = "row")
    
    image.png
    # clustering_method参数设定不同聚类方法,默认为"complete",可以设定为'ward', 'ward.D', 'ward.D2', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'
    pheatmap(test,scale = "row", clustering_method = "average")
    
    image.png
    # clustering_distance_rows = "correlation"参数设定行聚类距离方法为Pearson corralation,默认为欧氏距离"euclidean"
    pheatmap(test, scale = "row", clustering_distance_rows = "correlation")
    
    image.png
    # color参数自定义颜色
    pheatmap(test, color = colorRampPalette(c("navy", "white", "firebrick3"))(50))
    
    image.png
    # cluster_row = FALSE参数设定不对行进行聚类
    pheatmap(test, cluster_row = FALSE)
    
    image.png
    # legend_breaks参数设定图例显示范围,legend_labels参数添加图例标签
    pheatmap(test, legend_breaks = c(1:5), legend_labels = c("1.0","2.0","3.0","4.0","5.0"))
    
    image.png
    # legend = FALSE参数去掉图例
    pheatmap(test, legend = FALSE)
    
    image.png
    # border_color参数设定每个热图格子的边框色
    pheatmap(test, border_color = "red")
    
    image.png
    # border=FALSE参数去掉边框线
    pheatmap(test, border=FALSE)
    
    image.png
    # show_rownames和show_colnames参数设定是否显示行名和列名
    pheatmap(test,show_rownames=F,show_colnames=F)
    
    image.png
    # treeheight_row和treeheight_col参数设定行和列聚类树的高度,默认为50
    pheatmap(test, treeheight_row = 30, treeheight_col = 50)
    
    image.png
    # display_numbers = TRUE参数设定在每个热图格子中显示相应的数值,number_color参数设置数值字体的颜色
    pheatmap(test, display_numbers = TRUE,number_color = "blue")
    
    image.png
    # number_format = "%.1e"参数设定数值的显示格式
    pheatmap(test, display_numbers = TRUE, number_format = "%.1e")
    
    image.png
    # 自定义数值的显示方式
    pheatmap(test, display_numbers = matrix(ifelse(test > 5, "*", ""), nrow(test)))
    
    image.png
    # cellwidth和cellheight参数设定每个热图格子的宽度和高度,main参数添加主标题
    pheatmap(test, cellwidth = 15, cellheight = 12, main = "Example heatmap")
    
    image.png
    # 构建列注释信息
    annotation_col = data.frame(
      CellType = factor(rep(c("CT1", "CT2"), 5)), 
      Time = 1:5
    )
    rownames(annotation_col) = paste("Test", 1:10, sep = "")
    head(annotation_col)
    
    ##       CellType Time
    ## Test1      CT1    1
    ## Test2      CT2    2
    ## Test3      CT1    3
    ## Test4      CT2    4
    ## Test5      CT1    5
    ## Test6      CT2    1
    
    # 构建行注释信息
    annotation_row = data.frame(
      GeneClass = factor(rep(c("Path1", "Path2", "Path3"), c(10, 4, 6)))
    )
    rownames(annotation_row) = paste("Gene", 1:20, sep = "")
    head(annotation_row)
    
    ##       GeneClass
    ## Gene1     Path1
    ## Gene2     Path1
    ## Gene3     Path1
    ## Gene4     Path1
    ## Gene5     Path1
    ## Gene6     Path1
    
    # annotation_col参数添加列注释信息
    pheatmap(test, annotation_col = annotation_col)
    
    image.png
    # annotation_legend = FALSE参数去掉注释图例
    pheatmap(test, annotation_col = annotation_col, annotation_legend = FALSE)
    
    image.png
    # annotation_col和annotation_row参数同时添加行和列的注释信息
    pheatmap(test, annotation_row = annotation_row, annotation_col = annotation_col)
    
    image.png
    # 自定注释信息的颜色列表
    ann_colors = list(
      Time = c("white", "firebrick"),
      CellType = c(CT1 = "#1B9E77", CT2 = "#D95F02"),
      GeneClass = c(Path1 = "#7570B3", Path2 = "#E7298A", Path3 = "#66A61E")
    )
    head(ann_colors)
    
    ## $Time
    ## [1] "white"     "firebrick"
    ## 
    ## $CellType
    ##       CT1       CT2 
    ## "#1B9E77" "#D95F02" 
    ## 
    ## $GeneClass
    ##     Path1     Path2     Path3 
    ## "#7570B3" "#E7298A" "#66A61E"
    
    # annotation_colors设定注释信息的颜色
    pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors, main = "Title")
    
    image.png
    pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row, 
             annotation_colors = ann_colors)
    
    image.png
    pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors[2]) 
    
    image.png
    # gaps_row = c(10, 14)参数在第10和14行处添加gap, 要求对行不进行聚类
    pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14))
    
    image.png
    # cutree_col = 2参数将列按聚类树的结果分成两部分, 要求对列进行聚类
    pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14),
             cutree_col = 2)
    
    image.png
    # 对行和列都不聚类,自定义划分行和列的gap
    pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, cluster_cols = FALSE, 
             gaps_row = c(6, 10, 14), gaps_col = c(2, 5, 8))
    
    image.png
    # 自定义行的标签名
    labels_row = c("", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
                   "", "", "Il10", "Il15", "Il1b")
    # labels_row参数添加行标签
    pheatmap(test, annotation_col = annotation_col, labels_row = labels_row)
    
    image.png
    # 自定义聚类的距离方法
    drows = dist(test, method = "minkowski")
    dcols = dist(t(test), method = "minkowski")
    # clustering_distance_rows和clustering_distance_cols参数设定行和列的聚类距离方法
    pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols)
    
    image.png
    # fontsize参数设定标签字体大小,filename参数设定图片保存名称
    pheatmap(test, cellwidth = 15, cellheight = 12, fontsize = 8, filename = "test.pdf")
    

    将热图结果按聚类后的顺序输出

    aa=pheatmap(test,scale="row")  #热图,归一化,并聚类
    
    image.png
    # 简要查看热图对象的信息
    summary(aa)
    
    ##          Length Class  Mode   
    ## tree_row 7      hclust list   
    ## tree_col 7      hclust list   
    ## kmeans   1      -none- logical
    ## gtable   6      gtable list
    
    order_row = aa$tree_row$order  #记录热图的行排序
    order_col = aa$tree_col$order    #记录热图的列排序
    datat = data.frame(test[order_row,order_col])   # 按照热图的顺序,重新排原始数据
    datat = data.frame(rownames(datat),datat,check.names =F)  # 将行名加到表格数据中
    colnames(datat)[1] = "geneid" 
    write.table(datat,file="reorder.txt",row.names=FALSE,quote = FALSE,sep='\t')  #输出结果,按照热图中的顺序
    
    sessionInfo()
    
    ## R version 3.5.1 (2018-07-02)
    ## Platform: x86_64-apple-darwin15.6.0 (64-bit)
    ## Running under: OS X El Capitan 10.11.3
    ## 
    ## Matrix products: default
    ## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
    ## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
    ## 
    ## locale:
    ## [1] zh_CN.UTF-8/zh_CN.UTF-8/zh_CN.UTF-8/C/zh_CN.UTF-8/zh_CN.UTF-8
    ## 
    ## attached base packages:
    ## [1] stats     graphics  grDevices utils     datasets  methods   base     
    ## 
    ## other attached packages:
    ## [1] pheatmap_1.0.10
    ## 
    ## loaded via a namespace (and not attached):
    ##  [1] Rcpp_0.12.18       digest_0.6.16      rprojroot_1.3-2   
    ##  [4] grid_3.5.1         gtable_0.2.0       backports_1.1.2   
    ##  [7] magrittr_1.5       scales_1.0.0       evaluate_0.11     
    ## [10] stringi_1.2.4      rmarkdown_1.10     RColorBrewer_1.1-2
    ## [13] tools_3.5.1        stringr_1.3.1      munsell_0.5.0     
    ## [16] yaml_2.2.0         compiler_3.5.1     colorspace_1.3-2  
    ## [19] htmltools_0.3.6    knitr_1.20
    

    相关文章

      网友评论

        本文标题:使用pheatmap包绘制热图

        本文链接:https://www.haomeiwen.com/subject/wyhtaftx.html