美文网首页
swift内存管理

swift内存管理

作者: iOS小洁 | 来源:发表于2022-12-13 21:37 被阅读0次

    ARC

    跟OC一样,Swift也是采取基于引用计数的ARC内存管理方案(针对堆空间)

    Swift的ARC中有3种引用

    • 强引用(strong reference):默认情况下,引用都是强引用
    • 弱引用(weak reference):通过weak定义弱引用 。必须是可选类型的var,因为实例销毁后,ARC会自动将弱引用设置为nil ;ARC自动给弱引用设置nil时,不会触发属性观察器
    • 无主引用(unowned reference):通过unowned定义无主引用 。 不会产生强引用,实例销毁后仍然存储着实例的内存地址(类似于OC中的unsafe_unretained) ;试图在实例销毁后访问无主引用,会产生运行时错误(野指针) Fatal error: Attempted to read an unowned reference but object 0x0 was already deallocated

    weak、unowned的使用限制

    weak、unowned只能用在类实例上面

    Autoreleasepool

    public func autoreleasepool<Result>(invoking body: () throws -> Result) rethrows -> Result
    
    autoreleasepool { 
        let p = MJPerson(age: 20, name: "Jack") 
      p.run() 
    }
    

    循环引用(Reference Cycle)

    weak、unowned 都能解决循环引用的问题,unowned 要比 weak 少一些性能消耗

    在生命周期中可能会变为 nil 的使用 weak

    初始化赋值后再也不会变为 nil 的使用 unowned

    闭包的循环引用

    闭包表达式默认会对用到的外层对象产生额外的强引用(对外层对象进行了retain操作)

    下面代码会产生循环引用,导致Person对象无法释放(看不到Person的deinit被调用)

    class Person { 
      var fn: (() -> ())?
      func run() { print("run") } 
      deinit { print("deinit") } 
    } 
    
    func test() {
        let p = Person()
      p.fn = { p.run() } 
    } 
    test()
    

    解决:在闭包表达式的捕获列表声明weak或unowned引用,解决循环引用问题

    p.fn = { [weak p] in p?.run() }
    
    p.fn = { [unowned p] in p.run() }
    

    如果想在定义闭包属性的同时引用self,这个闭包必须是lazy的(因为在实例初始化完毕之后才能引用self)

    class Person {
      lazy var fn: (() -> ()) = { [weak self] in self?.run() } 
      func run() { print("run") } 
      deinit { print("deinit") }
    }
    // 上边的闭包fn内部如果用到了实例成员(属性、方法) 编译器会强制要求明确写出self
    

    如果lazy属性是闭包调用的结果,那么不用考虑循环引用的问题(因为闭包调用后,闭包的生命周期就结束了)

    class Person {
      var age: Int = 0 
      lazy var getAge: Int = { self.age }() 
      deinit { print("deinit") }
    }
    

    @escaping

    非逃逸闭包、逃逸闭包,一般都是当做参数传递给函数

    非逃逸闭包:闭包调用发生在函数结束前,闭包调用在函数作用域内

    逃逸闭包:闭包有可能在函数结束后调用,闭包调用逃离了函数的作用域,需要通过@escaping声明

    class Person {
      var fn: Fn // fn是逃逸闭包 
      init(fn: @escaping Fn) {
        self.fn = fn 
      }
      func run() {
        // DispatchQueue.global().async也是一个逃逸闭包
        // 它用到了实例成员(属性、方法),编译器会强制要求明确写出self
        DispatchQueue.global().async {
          self.fn()
        }
      }
    }
    

    逃逸闭包不可以捕获inout参数

    typealias Fn = () -> () 
    func other1(_ fn: Fn) { fn() } 
    func other2(_ fn: @escaping Fn) { fn() }
    func test(value: inout Int) -> Fn { 
      other1 { value += 1 }
    
      // error: 逃逸闭包不能捕获inout参数 
      other2 { value += 1 }
      
      func plus() { value += 1 } 
      // error: 逃逸闭包不能捕获inout参数 
      return plus
    }
    

    内存访问冲突(Conflicting Access to Memory)

    内存访问冲突会在两个访问满足下列条件时发生:

    • 至少一个是写入操作
    • 它们访问的是同一块内存
    • 它们的访问时间重叠(比如在同一个函数内)
    struct Player {
      var name: String 
      var health: Int
      var energy: Int mutating
      func shareHealth(with teammate: inout Player) { 
        balance(&teammate.health, &health) 
      }
    } 
    var oscar = Player(name: "Oscar", health: 10, energy: 10) 
    var maria = Player(name: "Maria", health: 5, energy: 10) 
    oscar.shareHealth(with: &maria) // OK 
    oscar.shareHealth(with: &oscar) // Error
    

    如果下面的条件可以满足,就说明重叠访问结构体的属性是安全的

    • 你只访问实例存储属性,不是计算属性或者类属性
    • 结构体是局部变量而非全局变量
    • 结构体要么没有被闭包捕获要么只被非逃逸闭包捕获
    // Ok 
    func test() {
      var tulpe = (health: 10, energy: 20) 
      balance(&tulpe.health, &tulpe.energy)
    
      var holly = Player(name: "Holly", health: 10, energy: 10) 
      balance(&holly.health, &holly.energy)
    } 
    test()
    

    指针

    Swift中也有专门的指针类型,这些都被定性为“Unsafe”(不安全的),常见的有以下4种类型

    • UnsafePointer<Pointee> 类似于 const Pointee *
    • UnsafeMutablePointer<Pointee> 类似于 Pointee *
    • UnsafeRawPointer 类似于 const void *
    • UnsafeMutableRawPointer 类似于 void *
    var age = 10 
    func test1(_ ptr: UnsafeMutablePointer<Int>) { ptr.pointee += 10 } 
    func test2(_ ptr: UnsafePointer<Int>) { print(ptr.pointee) } 
    test1(&age) 
    test2(&age) // 20 
    print(age) // 20
    
    var age = 10 
    func test3(_ ptr: UnsafeMutableRawPointer) { ptr.storeBytes(of: 20, as: Int.self) } 
    func test4(_ ptr: UnsafeRawPointer) { print(ptr.load(as: Int.self)) } 
    test3(&age) 
    test4(&age) // 20 
    print(age) // 20
    

    指针的应用示例

    var arr = NSArray(objects: 11, 22, 33, 44) 
    arr.enumerateObjects { (obj, idx, stop) in 
        print(idx, obj) 
        if idx == 2 { 
        // 下标为2就停止遍历 
        stop.pointee = true 
      } 
    }
    
    var arr = NSArray(objects: 11, 22, 33, 44) 
    for (idx, obj) in arr.enumerated() { 
      print(idx, obj) 
      if idx == 2 { break } 
    }
    

    获得指向某个变量的指针

    var age = 11 
    var ptr1 = withUnsafeMutablePointer(to: &age) { $0 } 
    var ptr2 = withUnsafePointer(to: &age) { $0 } 
    ptr1.pointee = 22 
    print(ptr2.pointee) // 22 
    print(age) // 22
    
    var ptr3 = withUnsafeMutablePointer(to: &age) { UnsafeMutableRawPointer($0) } 
    var ptr4 = withUnsafePointer(to: &age) { UnsafeRawPointer($0) } 
    ptr3.storeBytes(of: 33, as: Int.self) 
    print(ptr4.load(as: Int.self)) // 33 
    print(age) // 33
    

    获得指向堆空间实例的指针

    class Person {} 
    var person = Person() 
    var ptr = withUnsafePointer(to: &person) { UnsafeRawPointer($0) } 
    var heapPtr = UnsafeRawPointer(bitPattern: ptr.load(as: UInt.self)) 
    print(heapPtr!)
    

    创建指针

    var ptr = UnsafeRawPointer(bitPattern: 0x100001234)// 创建 
    
    
    var ptr = malloc(16) 
    // 存 
    ptr?.storeBytes(of: 11, as: Int.self) 
    ptr?.storeBytes(of: 22, toByteOffset: 8, as: Int.self) 
    // 取 
    print((ptr?.load(as: Int.self))!) // 11 
    print((ptr?.load(fromByteOffset: 8, as: Int.self))!) // 22
    // 销毁 
    free(ptr)
    
    var ptr = UnsafeMutableRawPointer.allocate(byteCount: 16, alignment: 1) 
    ptr.storeBytes(of: 11, as: Int.self) 
    ptr.advanced(by: 8).storeBytes(of: 22, as: Int.self) 
    print(ptr.load(as: Int.self)) // 11 
    print(ptr.advanced(by: 8).load(as: Int.self)) // 22 
    ptr.deallocate()
    
    
    var ptr = UnsafeMutablePointer<Int>.allocate(capacity: 3) 
    ptr.initialize(to: 11) 
    ptr.successor().initialize(to: 22) 
    ptr.successor().successor().initialize(to: 33)
    print(ptr.pointee) // 11 
    print((ptr + 1).pointee) // 22 
    print((ptr + 2).pointee) // 33
    print(ptr[0]) // 11 
    print(ptr[1]) // 22 
    print(ptr[2]) // 33
    ptr.deinitialize(count: 3) 
    ptr.deallocate()
    
    
    
    class Person {
      var age: Int 
      var name: String 
      init(age: Int, name: String) {
        self.age = age
        self.name = name
      } 
      deinit { print(name, "deinit") }
    }
    
    var ptr = UnsafeMutablePointer<Person>.allocate(capacity: 3) 
    ptr.initialize(to: Person(age: 10, name: "Jack")) 
    (ptr + 1).initialize(to: Person(age: 11, name: "Rose")) 
    (ptr + 2).initialize(to: Person(age: 12, name: "Kate")) 
    // Jack deinit 
    // Rose deinit 
    // Kate deinit 
    ptr.deinitialize(count: 3) 
    ptr.deallocate()
    

    指针之间的转换

    var ptr = UnsafeMutableRawPointer.allocate(byteCount: 16, alignment: 1)
    ptr.assumingMemoryBound(to: Int.self).pointee = 11 
    (ptr + 8).assumingMemoryBound(to: Double.self).pointee = 22.0
    
    print(unsafeBitCast(ptr, to: UnsafePointer<Int>.self).pointee) // 11 
    print(unsafeBitCast(ptr + 8, to: UnsafePointer<Double>.self).pointee) // 22.0
    
    ptr.deallocate()
    
    // unsafeBitCast是忽略数据类型的强制转换,不会因为数据类型的变化而改变原来的内存数据  
    // 类似于C++中的reinterpret_cast
    
    class Person {} 
    var person = Person() 
    var ptr = unsafeBitCast(person, to: UnsafeRawPointer.self) 
    print(ptr)
    

    相关文章

      网友评论

          本文标题:swift内存管理

          本文链接:https://www.haomeiwen.com/subject/tshkqdtx.html