同步wx公号(arXiv每日论文速递),支持后台回复'search 关键词'搜索相关的最新论文。有些许帮助的话,麻烦关注一下哦(* ̄rǒ ̄)
cs.CV 方向,今日共计69篇
[检测分类相关]:
【1】 Pay attention to the activations: a modular attention mechanism for fine-grained image recognition
注意激活:细粒度图像识别的模块化注意机制
作者: Pau Rodríguez López, Jordi Gonzàlez Sabaté
链接:https://arxiv.org/abs/1907.13075
【2】 Attention Filtering for Multi-person Spatiotemporal Action Detection on Deep Two-Stream CNN Architectures
深层双流CNN体系结构中多人时空行为检测的注意过滤
作者: João Antunes, Daniel Siewiorek
链接:https://arxiv.org/abs/1907.12919
【3】 Reg R-CNN: Lesion Detection and Grading under Noisy Labels
REG R-CNN:噪声标签下的病变检测和分级
作者: Gregor N. Ramien, Klaus H. Maier-Hein
链接:https://arxiv.org/abs/1907.12915
【4】 Detecting Spoofing Attacks Using VGG and SincNet: BUT-Omilia Submission to ASVspoof 2019 Challenge
使用VGG和SincNet检测欺骗攻击:但是-Omilia提交给ASVspoof 2019挑战
作者: Hossein Zeinali, Jan "Honza'' Černocký
链接:https://arxiv.org/abs/1907.12908
【5】 Slot Based Image Augmentation System for Object Detection
用于目标检测的基于槽的图像增强系统
作者: Yingwei Zhou
链接:https://arxiv.org/abs/1907.12900
【6】 PointHop: An Explainable Machine Learning Method for Point Cloud Classification
PointHop:一种可解释的点云分类机器学习方法
作者: Min Zhang, C.-C. Jay Kuo
链接:https://arxiv.org/abs/1907.12766
【7】 MoBiNet: A Mobile Binary Network for Image Classification
MoBiNet:一种用于图像分类的移动二值网络
作者: Hai Phan, Zhiqiang Shen
链接:https://arxiv.org/abs/1907.12629
【8】 Screening Mammogram Classification with Prior Exams
用前期检查筛选乳房X线片分类
作者: Jungkyu Park, Krzysztof J. Geras
备注:MIDL 2019 [arXiv:1907.08612]
链接:https://arxiv.org/abs/1907.13057
【9】 Particle Swarm Optimisation for Evolving Deep Neural Networks for Image Classification by Evolving and Stacking Transferable Blocks
进化深层神经网络的粒子群优化算法及其在图像分类中的应用
作者: Bin Wang, Mengjie Zhang
备注:Under review of Australasian Joint Conference on Artificial Intelligence 2019
链接:https://arxiv.org/abs/1907.12659
【10】 Task Classification Model for Visual Fixation, Exploration, and Search
用于视觉固定、探索和搜索的任务分类模型
作者: Ayush Kumar, Klaus Mueller
链接:https://arxiv.org/abs/1907.12635
[分割/语义相关]:
【1】 Deblurring Face Images using Uncertainty Guided Multi-Stream Semantic Networks
基于不确定性引导的多流语义网络人脸图像去模糊
作者: Rajeev Yasarla (Student Member, IEEE)
备注:TIP 2019 submission
链接:https://arxiv.org/abs/1907.13106
【2】 Grid Saliency for Context Explanations of Semantic Segmentation
语义切分上下文解释的网格显著性
作者: Lukas Hoyer, Volker Fischer
链接:https://arxiv.org/abs/1907.13054
【3】 Deep Learning architectures for generalized immunofluorescence based nuclear image segmentation
基于广义免疫荧光的核图像分割的深度学习结构
作者: Florian Kromp, Allan Hanbury
链接:https://arxiv.org/abs/1907.12975
【4】 2D and 3D Segmentation of uncertain local collagen fiber orientations in SHG microscopy
SHG显微镜中不确定局部胶原纤维取向的二维和三维分割
作者: Lars Schmarje, Reinhard Koch
链接:https://arxiv.org/abs/1907.12868
【5】 ColorMapGAN: Unsupervised Domain Adaptation for Semantic Segmentation Using Color Mapping Generative Adversarial Networks
ColorMapGAN:基于颜色映射生成对抗性网络的无监督领域自适应语义分割
作者: Onur Tasar, Pierre Alliez
链接:https://arxiv.org/abs/1907.12859
【6】 Orientation-aware Semantic Segmentation on Icosahedron Spheres
基于二十面体球体的方位感知语义分割
作者: Chao Zhang, Roberto Cipolla
备注:9 pages, accepted to iccv 2019
链接:https://arxiv.org/abs/1907.12849
【7】 An Empirical Study of Propagation-based Methods for Video Object Segmentation
基于传播的视频对象分割方法的实证研究
作者: Hengkai Guo, Xuefeng Xiao
备注:The 2019 DAVIS Challenge on Video Object Segmentation - CVPR Workshops
链接:https://arxiv.org/abs/1907.12769
【8】 Lung image segmentation by generative adversarial networks
基于生成对抗性网络的肺图像分割
作者: Jiaxin Cai, Hongfeng Zhu
链接:https://arxiv.org/abs/1907.13033
【9】 Attention Guided Network for Retinal Image Segmentation
注意力引导网络在视网膜图像分割中的应用
作者: Shihao Zhang, Yanwu Xu
备注:Accepted by MICCAI 2019. Project page: (this https URL)
链接:https://arxiv.org/abs/1907.12930
【10】 Automatic Lesion Boundary Segmentation in Dermoscopic Images with Ensemble Deep Learning Methods
基于集成深度学习方法的皮肤镜图像病变边界自动分割
作者: Manu Goyal, Moi Hoon Yap
链接:https://arxiv.org/abs/1902.00809
[GAN/对抗式/生成式相关]:
【1】 ISEA: Image Steganalysis using Evolutionary Algorithms
ISEA:使用进化算法的图像隐写分析
作者: Farid Ghareh Mohammadi, Hamid R. Arabnia
链接:https://arxiv.org/abs/1907.12914
【2】 Data augmentation with Symbolic-to-Real Image Translation GANs for Traffic Sign Recognition
用于交通标志识别的符号-真实图像转换GANS数据增强
作者: Nour Soufi, Matias Valdenegro-Toro
链接:https://arxiv.org/abs/1907.12902
【3】 Increasing Shape Bias in ImageNet-Trained Networks Using Transfer Learning and Domain-Adversarial Methods
使用转移学习和领域对抗性方法在ImageNet训练的网络中增加形状偏差
作者: Francis Brochu
链接:https://arxiv.org/abs/1907.12892
【4】 Not All Adversarial Examples Require a Complex Defense: Identifying Over-optimized Adversarial Examples with IQR-based Logit Thresholding
并不是所有的对抗实例都需要复杂的防御:使用基于IQR的logit阈值识别过度优化的对抗实例
作者: Utku Ozbulak, Wesley De Neve
备注:Accepted for the 2019 International Joint Conference on Neural Networks (IJCNN-19)
链接:https://arxiv.org/abs/1907.12744
[行为/时空/光流/姿态/运动]:
【1】 SkeleMotion: A New Representation of Skeleton Joint Sequences Based on Motion Information for 3D Action Recognition
SkeleMotion:一种新的基于运动信息的骨骼关节序列表示方法
作者: Carlos Caetano, William Robson Schwartz
备注:16-th IEEE International Conference on Advanced Video and Signal-based Surveillance (AVSS2019)
链接:https://arxiv.org/abs/1907.13025
【2】 Preterm infants' limb-pose estimation from depth images using convolutional neural networks
基于卷积神经网络的深度图像早产儿肢体姿势估计
作者: Sara Moccia, Emanuele Frontoni
链接:https://arxiv.org/abs/1907.12949
【3】 EmoCo: Visual Analysis of Emotion Coherence in Presentation Videos
EmoCo:演示视频中情感连贯性的视觉分析
作者: Haipeng Zeng, Huamin Qu
备注:11 pages, 8 figures. Accepted by IEEE VAST 2019
链接:https://arxiv.org/abs/1907.12918
【4】 Open Set Domain Adaptation for Image and Action Recognition
用于图像和动作识别的开集域自适应
作者: Pau Panareda Busto, Juergen Gall
链接:https://arxiv.org/abs/1907.12865
[半/弱/无监督相关]:
【1】 Weakly Supervised Body Part Parsing with Pose based Part Priors
基于姿势优先的弱监督人体部位分析
作者: Zhengyuan Yang, Jiebo Luo
链接:https://arxiv.org/abs/1907.13051
【2】 Weakly Supervised Object Localization using Min-Max Entropy: an Interpretable Framework
基于最小-最大熵的弱监督对象定位:一种可解释的框架
作者: Soufiane Belharbi, Eric Granger
链接:https://arxiv.org/abs/1907.12934
【3】 Distill-to-Label: Weakly Supervised Instance Labeling Using Knowledge Distillation
提取到标签:使用知识蒸馏的弱监督实例标签
作者: Jayaraman J. Thiagarajan, Alexandros Karagyris
链接:https://arxiv.org/abs/1907.12926
【4】 Unsupervised Separation of Dynamics from Pixels
动态与像素的无监督分离
作者: Silvia Chiappa, Ulrich Paquet
链接:https://arxiv.org/abs/1907.12906
【5】 Multi-Angle Point Cloud-VAE: Unsupervised Feature Learning for 3D Point Clouds from Multiple Angles by Joint Self-Reconstruction and Half-to-Half Prediction
多角度点云-VAE:基于联合自重构和半预测的多角度三维点云无监督特征学习
作者: Zhizhong Han, Matthias Zwicker
备注:To appear at ICCV 2019
链接:https://arxiv.org/abs/1907.12704
[跟踪相关]:
【1】 Tracking Holistic Object Representations
跟踪整体对象表示
作者: Axel Sauer, Sami Haddadin
备注:Accepted for oral presentation at BMVC 2019
链接:https://arxiv.org/abs/1907.12920
【2】 End-to-end Recurrent Multi-Object Tracking and Trajectory Prediction with Relational Reasoning
基于关系推理的端到端循环多目标跟踪与轨迹预测
作者: Fabian B. Fuchs, Ingmar Posner
链接:https://arxiv.org/abs/1907.12887
【3】 Deep Learning in Video Multi-Object Tracking: A Survey
视频多目标跟踪中的深度学习:综述
作者: Gioele Ciaparrone, Francisco Herrera
链接:https://arxiv.org/abs/1907.12740
[迁移学习/domain/主动学习相关]:
【1】 Temporal Attentive Alignment for Large-Scale Video Domain Adaptation
大规模视频域自适应的时间注意对齐
作者: Min-Hung Chen, Jian Zheng
备注:International Conference on Computer Vision (ICCV) 2019. Code and data: this http URL
链接:https://arxiv.org/abs/1907.12743
【2】 Artistic Domain Generalisation Methods are Limited by their Deep Representations
艺术领域综合方法受深度表征的限制
作者: Padraig Boulton, Peter Hall
链接:https://arxiv.org/abs/1907.12622
[视频理解VQA/caption等]:
【1】 Watch It Twice: Video Captioning with a Refocused Video Encoder
观看两次:使用重新聚焦的视频编码器的视频字幕
作者: Xiangxi Shi, Jiuxiang Gu
链接:https://arxiv.org/abs/1907.12905
[数据集dataset]:
【1】 Covering up bias in CelebA-like datasets with Markov blankets: A post-hoc cure for attribute prior avoidance
用马尔可夫毯子掩盖类CelebA数据集中的偏差:属性先验避免的一种后特效疗法
作者: Vinay Uday Prabhu, John Whaley
备注:Accepted for presentation at the first workshop on Invertible Neural Networks and Normalizing Flows (ICML 2019), Long Beach, CA, USA
链接:https://arxiv.org/abs/1907.12917
【2】 Exploring large scale public medical image datasets
探索大规模公共医学图像数据集
作者: Luke Oakden-Rayner
链接:https://arxiv.org/abs/1907.12720
[其他视频相关]:
【1】 Temporal Localization of Moments in Video Collections with Natural Language
基于自然语言的视频集合中矩的时间定位
作者: Victor Escorcia, Bryan Russell
链接:https://arxiv.org/abs/1907.12763
[其他]:
【1】 Deformable Filter Convolution for Point Cloud Reasoning
用于点云推理的可变形滤波卷积
作者: Yuwen Xiong, Raquel Urtasun
链接:https://arxiv.org/abs/1907.13079
【2】 Efficient Method for Categorize Animals in the Wild
一种高效的野外动物分类方法
作者: Abulikemu Abuduweili, Xingchen Tao
链接:https://arxiv.org/abs/1907.13037
【3】 Bilateral Operators for Functional Maps
函数映射的双边算子
作者: Gautam Pai, Ron Kimmel
链接:https://arxiv.org/abs/1907.12993
【4】 FingerNet: Pushing The Limits of Fingerprint Recognition Using Convolutional Neural Network
FingerNet:利用卷积神经网络突破指纹识别的极限
作者: Shervin Minaee, Amirali Abdolrashidi
备注:arXiv admin note: substantial text overlap with arXiv:1907.09380
链接:https://arxiv.org/abs/1907.12956
【5】 RNN-based Online Handwritten Character Recognition Using Accelerometer and Gyroscope Data
使用加速度计和陀螺仪数据的基于RNN的在线手写字符识别
作者: Davit Soselia, Levan Shugliashvili
链接:https://arxiv.org/abs/1907.12935
【6】 Object as Distribution
对象作为分布
作者: Li Ding, Lex Fridman
备注:NeurIPS 2019
链接:https://arxiv.org/abs/1907.12929
【7】 Improved Super-Resolution Convolution Neural Network for Large Images
改进的大图像超分辨率卷积神经网络
作者: Junyu (Jason) Wang, Rong Song
链接:https://arxiv.org/abs/1907.12928
【8】 Unifying Structure Analysis and Surrogate-driven Function Regression for Glaucoma OCT Image Screening
统一结构分析和代理驱动函数回归在青光眼OCT图像筛选中的应用
作者: Xi Wang, Pheng-Ann Heng
备注:9 pages, 2 figures, MICCAI2019
链接:https://arxiv.org/abs/1907.12927
【9】 Look Further to Recognize Better: Learning Shared Topics and Category-Specific Dictionaries for Open-Ended 3D Object Recognition
进一步了解更好:学习共享主题和类别特定词典,用于开放式3D对象识别
作者: S. Hamidreza Kasaei
备注:arXiv admin note: text overlap with arXiv:1902.03057
链接:https://arxiv.org/abs/1907.12924
【10】 Evaluation of Distance Measures for Feature based Image Registration using AlexNet
使用AlexNet评估基于特征的图像配准的距离度量
作者: K.Kavitha, B. Thirumala Rao
链接:https://arxiv.org/abs/1907.12921
【11】 DANTE: Deep Affinity Network for Clustering Conversational Interactants
Dante:用于会话交互者聚类的深度亲和力网络
作者: Mason Swofford, Silvio Savarese
链接:https://arxiv.org/abs/1907.12910
【12】 Learned Image Downscaling for Upscaling using Content Adaptive Resampler
使用内容自适应重采样器进行向上缩放的学习图像缩小
作者: Wanjie Sun, Zhenzhong Chen
链接:https://arxiv.org/abs/1907.12904
【13】 A Multi-Scale Mapping Approach Based on a Deep Learning CNN Model for Reconstructing High-Resolution Urban DEMs
基于深度学习CNN模型的高分辨率城市DEM重建的多比例尺映射方法
作者: Ling Jiang, Andrea Soltoggio
链接:https://arxiv.org/abs/1907.12898
【14】 Safe Augmentation: Learning Task-Specific Transformations from Data
安全增强:从数据中学习特定于任务的转换
作者: Irynei Baran, Arseny Kravchenko
链接:https://arxiv.org/abs/1907.12896
【15】 4X4 Census Transform
4x4人口普查转型
作者: Olivier Rukundo
链接:https://arxiv.org/abs/1907.12891
【16】 CoachAI: A Project for Microscopic Badminton Match Data Collection and Tactical Analysis
CoachAI:微观羽毛球比赛数据采集与战术分析项目
作者: Tzu-Han Hsu, Yu-Tai Ching
链接:https://arxiv.org/abs/1907.12888
【17】 LEAF-QA: Locate, Encode & Attend for Figure Question Answering
LEAF-QA:定位、编码和参加图形问答
作者: Ritwick Chaudhry, Ajay Joshi
链接:https://arxiv.org/abs/1907.12861
【18】 Towards Pure End-to-End Learning for Recognizing Multiple Text Sequences from an Image
面向从图像中识别多个文本序列的纯端到端学习
作者: Xu Zhenlong, Pu shiliang
链接:https://arxiv.org/abs/1907.12791
【19】 Statistical Descriptors-based Automatic Fingerprint Identification: Machine Learning Approaches
基于统计描述符的自动指纹识别:机器学习方法
作者: Hamid Jan, Gautam Srivastava
链接:https://arxiv.org/abs/1907.12741
【20】 Deep Learning For Face Recognition: A Critical Analysis
人脸识别的深度学习:批判性分析
作者: Andrew Jason Shepley
链接:https://arxiv.org/abs/1907.12739
【21】 Propose-and-Attend Single Shot Detector
提议并参加单发探测器
作者: Ho-Deok Jang, In So Kweon
链接:https://arxiv.org/abs/1907.12736
【22】 Mapping road safety features from streetview imagery: A deep learning approach
从街景图像绘制道路安全特征:一种深度学习方法
作者: Arpan Sainju, Zhe Jiang
链接:https://arxiv.org/abs/1907.12647
【23】 Camera Exposure Control for Robust Robot Vision with Noise-Aware Image Quality Assessment
基于噪声感知图像质量评估的鲁棒机器人视觉相机曝光控制
作者: Ukcheol Shin, In So Kweon
备注:8 pages,6 figures, accepted in IROS2019
链接:https://arxiv.org/abs/1907.12646
【24】 GENESIS: Generative Scene Inference and Sampling with Object-Centric Latent Representations
创世:以对象为中心的潜在表征的生成性场景推理和采样
作者: Martin Engelcke, Ingmar Posner
备注:Submitted to the 3rd Conference on Robot Learning (CoRL 2019)
链接:https://arxiv.org/abs/1907.13052
【25】 Synthesis and Inpainting-Based MR-CT Registration for Image-Guided Thermal Ablation of Liver Tumors
基于合成和修复的MR-CT图像引导热消融肝脏肿瘤配准
作者: Dongming Wei, Qian Wang
备注:Accepted in MICCAI 2019
链接:https://arxiv.org/abs/1907.13020
【26】 Inertial nonconvex alternating minimizations for the image deblurring
图像去模糊的惯性非凸交替最小化
作者: Tao Sun, Hao Jiang
链接:https://arxiv.org/abs/1907.12945
【27】 Confounder-Aware Visualization of ConvNets
ConvNets的混杂感知可视化
作者: Qingyu Zhao, Kilian M. Pohl
链接:https://arxiv.org/abs/1907.12727
翻译:腾讯翻译君
网友评论