美文网首页机器学习_Python算法
JS实现十大经典排序算法

JS实现十大经典排序算法

作者: 小小的开发人员 | 来源:发表于2019-05-20 15:53 被阅读83次

  排序算法可以分为内部排序和外部排序。内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。
  常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序、计数排序、桶排序。

冒泡排序

  冒泡排序是一种比较简单的排序算法,它循环走过需要排序的元素,依次比较相邻的两个元素,如果顺序错误就交换,直至没有元素交换,完成排序。
  若对n个人进行排序,我们需要n-1次比较,所以第k次比较需要进行n-k次比较。排序算法通过以数据对象的两两比较作为关键,可以得出冒泡排序需要进行的比较次数为:(n-1) + (n-2) + ... + 1 = n*(n-1) / 2,因此冒泡排序的时间复杂度为O(n^2)。

动画演示:


function bubbleSort(arr) {
    let len = arr.length;
    for (let i = 0; i < len; i++) {
        for (let j = 0; j < len - 1 - i; j++) {
            if (arr[j] > arr[j + 1]) {     //相邻元素两两对比
                let temp = arr[j + 1]     //元素交换
                arr[j + 1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}

let arr = [5, 2, 1, 3, 6, 10, 8, 4, 7]
console.log(bubbleSort(arr)) // [ 1, 2, 3, 4, 5, 6, 7, 8, 10 ]

选择排序

  选择排序是一种简单直观的排序算法,工作原理为:在未排序的序列中找出最小(大)元素与第一个位置的元素交换位置。
  选择排序每遍历一次都记住了当前最小(大)元素的位置,最后仅需一次交换操作即可将其放到合适的位置。然后在剩下的元素中再找最小(大)元素与第二个元素的位置交换,依此类推,直到所有元素排序排序完成。根据上述描述,一共进行n-1趟比较后,就能完成整个排队过程。我们可以知道,第k趟比较需要进行的数组元素的两两比较的次数为n-k次,所以共需要的比较次数为n*(n-1) / 2,因此选择排序算法的时间复杂度与冒泡排序一样,也为O(n^2)。

动画演示:


function selectionSort(arr) {
    let len = arr.length;
    let minIndex, temp;
    for (let i = 0; i < len - 1; i++) {
        minIndex = i;
        for (let j = i + 1; j < len; j++) {
            if (arr[j] < arr[minIndex]) {     //寻找最小的数
                minIndex = j;                 //将最小数的索引保存
            }
        }
        temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
    return arr;
}

let arr = [5, 2, 1, 3, 6, 10, 8, 4, 7]
console.log(selectionSort(arr)) // [ 1, 2, 3, 4, 5, 6, 7, 8, 10 ]

插入排序

  插入排序是一种简单直观的排序算法,工作原理为构建有序序列,对于未排序元素,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间,直到排序完成,如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。理解了插入排序的思想后,我们便能够得到它的时间复杂度。对于n个元素,一共需要进行n-1轮比较,而第k轮比较需要进行k次数组元素的两两比较,因此共需要进行的比较次数为:1 + 2 + ... + (n-1),所以插入排序的时间复杂度同冒泡排序一样,也为O(n^2)。

动画演示:


function insertionSort(arr) {
    let len = arr.length;
    let preIndex, current;
    for (let i = 1; i < len; i++) {
        preIndex = i - 1;
        current = arr[i];
        while(preIndex >= 0 && arr[preIndex] > current) {
            arr[preIndex + 1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex + 1] = current;
    }
    return arr;
}

let arr = [5, 2, 1, 3, 6, 10, 8, 4, 7]
console.log(insertionSort(arr)) // [ 1, 2, 3, 4, 5, 6, 7, 8, 10 ]

希尔排序

  1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。
  选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
  按增量序列个数 k,对序列进行 k 趟排序;每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

动画演示:


function shellSort(arr) {
    var len = arr.length,
        temp,
        gap = 1;
    while(gap < len/3) {          //动态定义间隔序列
        gap = gap*3+1;
    }
    for (gap; gap > 0; gap = Math.floor(gap/3)) {
        for (var i = gap; i < len; i++) {
            temp = arr[i];
            for (var j = i-gap; j >= 0 && arr[j] > temp; j -= gap) {
                arr[j+gap] = arr[j];
            }
            arr[j+gap] = temp;
        }
    }
    return arr;
}

let arr = [5, 2, 1, 3, 9,6, 10, 8, 4, 7]
console.log(shellSort(arr)) // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

归并排序

function mergeSort(arr) {  //采用自上而下的递归方法
    let len = arr.length;
    if(len < 2) {
        return arr;
    }
    let middle = Math.floor(len / 2),
        left = arr.slice(0, middle),
        right = arr.slice(middle);
    return merge(mergeSort(left), mergeSort(right));
}

function merge(left, right) {
    let result = [];

    while (left.length > 0 && right.length > 0) {
        if (left[0] <= right[0]) {
            result.push(left.shift());
        } else {
            result.push(right.shift());
        }
    }

    while (left.length)
        result.push(left.shift());

    while (right.length)
        result.push(right.shift());

    return result;
}

let arr = [5, 2, 1, 3, 9,6, 10, 8, 4, 7]
console.log(mergeSort(arr)) // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

快速排序

  快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
  具体算法描述如下:从数列中挑出一个元素,称为 “基准”(pivot);重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

function quickSort(arr, left, right) {
    var len = arr.length,
        partitionIndex,
        left = typeof left != 'number' ? 0 : left,
        right = typeof right != 'number' ? len - 1 : right;

    if (left < right) {
        partitionIndex = partition(arr, left, right);
        quickSort(arr, left, partitionIndex-1);
        quickSort(arr, partitionIndex+1, right);
    }
    return arr;
}

function partition(arr, left ,right) {     // 分区操作
    var pivot = left,                      // 设定基准值(pivot)
        index = pivot + 1;
    for (var i = index; i <= right; i++) {
        if (arr[i] < arr[pivot]) {
            swap(arr, i, index);
            index++;
        }
    }
    swap(arr, pivot, index - 1);
    return index-1;
}

function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

let arr = [5, 2, 1, 3, 9,6, 10, 8, 4, 7]
console.log(quickSort(arr)) // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

简单版:

function quickSort(arr){

    //如果数组 <=1, 则直接返回
    if(arr.length <= 1){return arr}

    //找基准
    let pivotIndex = Math.floor(arr.length / 2)

    // 把基准从原数组删除
    let pivot = arr.splice(pivotIndex, 1)[0]

    //定义左右数组
    let left = []
    let right = []

    //比基准小的放在left,比基准大的放在right
    for(let i = 0; i < arr.length; i++){
        if(arr[i] <= pivot){
            left.push(arr[i])
        }
        else{
            right.push(arr[i])
        }
    }

    //递归
    return quickSort(left).concat([pivot],quickSort(right))
}

let arr = [5, 2, 1, 3, 9,6, 10, 8, 4, 7]
console.log(quickSort(arr)) // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
堆排序

  堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

var len;    // 因为声明的多个函数都需要数据长度,所以把len设置成为全局变量

function buildMaxHeap(arr) {   // 建立大顶堆
    len = arr.length;
    for (var i = Math.floor(len/2); i >= 0; i--) {
        heapify(arr, i);
    }
}

function heapify(arr, i) {     // 堆调整
    var left = 2 * i + 1,
        right = 2 * i + 2,
        largest = i;

    if (left < len && arr[left] > arr[largest]) {
        largest = left;
    }

    if (right < len && arr[right] > arr[largest]) {
        largest = right;
    }

    if (largest != i) {
        swap(arr, i, largest);
        heapify(arr, largest);
    }
}

function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

function heapSort(arr) {
    buildMaxHeap(arr);

    for (var i = arr.length - 1; i > 0; i--) {
        swap(arr, 0, i);
        len--;
        heapify(arr, 0);
    }
    return arr;
}

let arr = [5, 2, 1, 3, 9,6, 10, 8, 4, 7]
console.log(heapSort(arr)) // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

各排序算法比较

相关文章

网友评论

    本文标题:JS实现十大经典排序算法

    本文链接:https://www.haomeiwen.com/subject/txlkzqtx.html