美文网首页
Gallery Basic1

Gallery Basic1

作者: 数科每日 | 来源:发表于2020-11-26 23:06 被阅读0次

    Point Scatter

    image.png
    import plotly.express as px
    fig = px.scatter(x=[0, 1, 2, 3, 4], y=[0, 1, 4, 9, 16])
    fig.show()
    

    X, Y Scatter Plot

    image.png
    # x and y given as DataFrame columns
    import plotly.express as px
    df = px.data.iris() # iris is a pandas DataFrame
    fig = px.scatter(df, x="sepal_width", y="sepal_length")
    fig.show()
    

    Bubble Chart

    image.png
    import plotly.express as px
    
    df = px.data.iris()
    df.head()
    fig = px.scatter(df, x="sepal_width", 
                         y="sepal_length", 
                         color="species",
                         size='petal_length', 
                         hover_data=['petal_width'])
    fig.show()
    

    Function Draw

    image.png
    import plotly.express as px
    import numpy as np
    
    t = np.linspace(0, 2*np.pi, 100)
    
    fig = px.line(x=t, y=np.cos(t), labels={'x':'t', 'y':'cos(t)'})
    fig.show()
    

    Multline Plot

    image.png
    import plotly.express as px
    df = px.data.gapminder().query("continent == 'Oceania'")
    df.head()
    fig = px.line(df, x='year', y='lifeExp', color='country')
    fig.show()
    

    Dot line Plot

    image.png
    import plotly.graph_objects as go
    import numpy as np
    
    N = 1000
    t = np.linspace(0, 10, 100)
    y = np.sin(t)
    
    fig = go.Figure(data=go.Scatter(x=t, y=y, mode='markers'))
    
    fig.show()
    

    Multiple Line Style

    image.png
    import plotly.graph_objects as go
    
    # Create random data with numpy
    import numpy as np
    np.random.seed(1)
    
    N = 100
    random_x = np.linspace(0, 1, N)
    random_y0 = np.random.randn(N) + 5
    random_y1 = np.random.randn(N)
    random_y2 = np.random.randn(N) - 5
    
    fig = go.Figure()
    
    # Add traces
    fig.add_trace(go.Scatter(x=random_x, y=random_y0,
                        mode='markers',
                        name='markers'))
    fig.add_trace(go.Scatter(x=random_x, y=random_y1,
                        mode='lines+markers',
                        name='lines+markers'))
    fig.add_trace(go.Scatter(x=random_x, y=random_y2,
                        mode='lines',
                        name='lines'))
    
    fig.show()
    

    Use size and color

    image.png
    import plotly.graph_objects as go
    
    fig = go.Figure(data=go.Scatter(
        x=[1, 2, 3, 4],
        y=[10, 11, 12, 13],
        mode='markers',
        marker=dict(size=[40, 60, 80, 100],
                    color=[0, 1, 2, 3])
    ))
    
    fig.show()
    

    Update Figure

    image.png
    import plotly.graph_objects as go
    import numpy as np
    
    
    t = np.linspace(0, 10, 100)
    
    fig = go.Figure()
    
    fig.add_trace(go.Scatter(
        x=t, y=np.sin(t),
        name='sin',
        mode='markers',
        marker_color='rgba(152, 0, 0, .8)'
    ))
    
    fig.add_trace(go.Scatter(
        x=t, y=np.cos(t),
        name='cos',
        marker_color='rgba(255, 182, 193, .9)'
    ))
    
    # Set options common to all traces with fig.update_traces
    fig.update_traces(mode='markers', marker_line_width=2, marker_size=10)
    fig.update_layout(title='Styled Scatter',
                      yaxis_zeroline=False, xaxis_zeroline=False)
    
    
    fig.show()
    

    Gradually changed color with y-value

    image.png
    import plotly.graph_objects as go
    import pandas as pd
    
    # 1. Point color is accordence with y-value
    
    data= pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/2014_usa_states.csv")
    
    fig = go.Figure(data=go.Scatter(x=data['Postal'],
                                    y=data['Population'],
                                    mode='markers',
                                    marker_color=data['Population'],
                                    text=data['State'])) # hover text goes here
    
    fig.update_layout(title='Population of USA States')
    fig.show()
    

    Plotly colorscale

    image.png
    import plotly.graph_objects as go
    import numpy as np
    
    fig = go.Figure(data=go.Scatter(
        y = np.random.randn(500),
        mode='markers',
        marker=dict(
            size=16,
            color=np.random.randn(500), #set color equal to a variable
            colorscale='Viridis', # one of plotly colorscales
            showscale=True
        )
    ))
    
    fig.show()
    

    Plot Large Dataset

    image.png
    import plotly.graph_objects as go
    import numpy as np
    
    N = 100000
    fig = go.Figure(data=go.Scattergl(
        x = np.random.randn(N),
        y = np.random.randn(N),
        mode='markers',
        marker=dict(
            color=np.random.randn(N),
            colorscale='Viridis',
            line_width=1
        )
    ))
    
    fig.show()
    
    image.png
    import plotly.graph_objects as go
    import numpy as np
    
    N = 100000
    r = np.random.uniform(0, 1, N)
    theta = np.random.uniform(0, 2*np.pi, N)
    
    fig = go.Figure(data=go.Scattergl(
        x = r * np.cos(theta), # non-uniform distribution
        y = r * np.sin(theta), # zoom to see more points at the center
        mode='markers',
        marker=dict(
            color=np.random.randn(N),
            colorscale='Viridis',
            line_width=1
        )
    ))
    
    fig.show()
    

    Github

    相关文章

      网友评论

          本文标题:Gallery Basic1

          本文链接:https://www.haomeiwen.com/subject/uactwktx.html