简介
面内点算法是通过研究ol里面的方法改写得(抄的),贝塞尔曲线则是通过研究turfjs的源码改写的。其中上一篇文章中的tooltip就用到了标注点的计算。
两点之间贝塞尔曲线绘制
Paste_Image.png代码
define([
"../geometry/Polyline",
"../geometry/Point",
"../geometry/Polygon"
], function (Polyline, Point, Polygon) {
/* eslint-disable */
/**
* BezierSpline
* https://github.com/leszekr/bezier-spline-js
*
* @private
* @copyright
* Copyright (c) 2013 Leszek Rybicki
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
var Spline = function (options) {
this.points = options.points || [];
this.duration = options.duration || 100000;
this.sharpness = options.sharpness || 0.85;
this.centers = [];
this.controls = [];
this.stepLength = options.stepLength || 60;
this.length = this.points.length;
this.delay = 0;
// this is to ensure compatibility with the 2d version
for (var i = 0; i < this.length; i++) this.points[i].z = this.points[i].z || 0;
for (var i = 0; i < this.length - 1; i++) {
var p1 = this.points[i];
var p2 = this.points[i + 1];
this.centers.push({
x: (p1.x + p2.x) / 2,
y: (p1.y + p2.y) / 2,
z: (p1.z + p2.z) / 2
});
}
this.controls.push([this.points[0], this.points[0]]);
for (var i = 0; i < this.centers.length - 1; i++) {
var p1 = this.centers[i];
var p2 = this.centers[i + 1];
var dx = this.points[i + 1].x - (this.centers[i].x + this.centers[i + 1].x) / 2;
var dy = this.points[i + 1].y - (this.centers[i].y + this.centers[i + 1].y) / 2;
var dz = this.points[i + 1].z - (this.centers[i].y + this.centers[i + 1].z) / 2;
this.controls.push([{
x: (1.0 - this.sharpness) * this.points[i + 1].x + this.sharpness * (this.centers[i].x + dx),
y: (1.0 - this.sharpness) * this.points[i + 1].y + this.sharpness * (this.centers[i].y + dy),
z: (1.0 - this.sharpness) * this.points[i + 1].z + this.sharpness * (this.centers[i].z + dz)
},
{
x: (1.0 - this.sharpness) * this.points[i + 1].x + this.sharpness * (this.centers[i + 1].x + dx),
y: (1.0 - this.sharpness) * this.points[i + 1].y + this.sharpness * (this.centers[i + 1].y + dy),
z: (1.0 - this.sharpness) * this.points[i + 1].z + this.sharpness * (this.centers[i + 1].z + dz)
}]);
}
this.controls.push([this.points[this.length - 1], this.points[this.length - 1]]);
this.steps = this.cacheSteps(this.stepLength);
console.log(this.controls)
return this;
};
/*
Caches an array of equidistant (more or less) points on the curve.
*/
Spline.prototype.cacheSteps = function (mindist) {
var steps = [];
var laststep = this.pos(0);
steps.push(0);
for (var t = 0; t < this.duration; t += 10) {
var step = this.pos(t);
var dist = Math.sqrt((step.x - laststep.x) * (step.x - laststep.x) + (step.y - laststep.y) * (step.y - laststep.y) + (step.z - laststep.z) * (step.z - laststep.z));
if (dist > mindist) {
steps.push(t);
laststep = step;
}
}
return steps;
};
/*
returns angle and speed in the given point in the curve
*/
Spline.prototype.vector = function (t) {
var p1 = this.pos(t + 10);
var p2 = this.pos(t - 10);
return {
angle: 180 * Math.atan2(p1.y - p2.y, p1.x - p2.x) / 3.14,
speed: Math.sqrt((p2.x - p1.x) * (p2.x - p1.x) + (p2.y - p1.y) * (p2.y - p1.y) + (p2.z - p1.z) * (p2.z - p1.z))
};
};
/*
Gets the position of the point, given time.
WARNING: The speed is not constant. The time it takes between control points is constant.
For constant speed, use Spline.steps[i];
*/
Spline.prototype.pos = function (time) {
function bezier(t, p1, c1, c2, p2) {
var B = function (t) {
var t2 = t * t, t3 = t2 * t;
return [(t3), (3 * t2 * (1 - t)), (3 * t * (1 - t) * (1 - t)), ((1 - t) * (1 - t) * (1 - t))];
};
var b = B(t);
var pos = {
x: p2.x * b[0] + c2.x * b[1] + c1.x * b[2] + p1.x * b[3],
y: p2.y * b[0] + c2.y * b[1] + c1.y * b[2] + p1.y * b[3],
z: p2.z * b[0] + c2.z * b[1] + c1.z * b[2] + p1.z * b[3]
};
return pos;
}
var t = time - this.delay;
if (t < 0) t = 0;
if (t > this.duration) t = this.duration - 1;
//t = t-this.delay;
var t2 = (t) / this.duration;
if (t2 >= 1) return this.points[this.length - 1];
var n = Math.floor((this.points.length - 1) * t2);
var t1 = (this.length - 1) * t2 - n;
return bezier(t1, this.points[n], this.controls[n][1], this.controls[n + 1][0], this.points[n + 1]);
};
var customLib = {
getBesselLine: function (points, mapView, params) {
var coords = [];
var spline = new Spline(dojo.mixin({
points: points
}, params || {}));
for (var i = 0; i < spline.duration; i += 10) {
var pos = spline.pos(i);
if (Math.floor(i / 100) % 2 === 0) {
coords.push([pos.x, pos.y]);
}
}
var line = new Polyline({
paths: [coords],
spatialReference: mapView.spatialReference
});
return line
},
getBesselCenterPoint: function (p1, p2, mapView, L) {
L || (L = 30);
var point1 = mapView.toScreen(p1);
var point2 = mapView.toScreen(p2);
var a = point1.x, b = point1.y, c = point2.x, d = point2.y;
var e = (point1.x + point2.x) / 2;
var f = (point1.y + point2.y) / 2;
var g = Math.pow(a - e, 2) + Math.pow(b - f, 2) + Math.pow(L, 2);
var h = 2 * e - 2 * a;
var i = 2 * f - 2 * b;
var j = Math.pow(a, 2) - Math.pow(e, 2) + Math.pow(b, 2) - Math.pow(f, 2) + Math.pow(L, 2) - g;
var k = 1 + Math.pow(h / i, 2);
var m = (2 * b * h) / i - 2 * a + (2 * h * j) / Math.pow(i, 2);
var n = Math.pow(a, 2) + Math.pow(j / i, 2) + (2 * b * j) / i + Math.pow(b, 2) - g;
var x = (-m + Math.sqrt(Math.pow(m, 2) - 4 * k * n)) / (2 * k);
var y = -(h / i) * x - j / i;
var value = (a - x) * (d - y) - (b - y) * (c - x);
if (value < 0) {
x = (-m - Math.sqrt(Math.pow(m, 2) - 4 * k * n)) / (2 * k);
y = -(h / i) * x - j / i;
}
console.log('ddd', value)
var np = mapView.toMap({
x: x, y: y
});
return new Point({
x: np.x,
y: np.y,
spatialReference: mapView.spatialReference
});
},
getInterPointFromRing: function (ring, mapView) {
var i, ii, x, x1, x2, y1, y2;
var polygon = new Polygon({
"rings": [ring]
});
var extentCenter = polygon.extent.center;
var y = extentCenter.y;
var intersections = [];
var flatCoordinates = [];
for (var i = 0, len = ring.length; i < len; i++) {
flatCoordinates.push(ring[i][0], ring[i][1]);
}
var end = flatCoordinates.length;
x1 = flatCoordinates[end - 2];
y1 = flatCoordinates[end - 2 + 1];
for (i = 0; i < end; i += 2) {
x2 = flatCoordinates[i];
y2 = flatCoordinates[i + 1];
if ((y <= y1 && y2 <= y) || (y1 <= y && y <= y2)) {
x = (y - y1) / (y2 - y1) * (x2 - x1) + x1;
intersections.push(x);
}
x1 = x2;
y1 = y2;
}
var pointX = NaN;
var maxSegmentLength = -Infinity;
intersections.sort(function (a, b) {
return a - b;
});
x1 = intersections[0];
var xs = [];
for (i = 1, ii = intersections.length; i < ii; ++i) {
x2 = intersections[i];
var segmentLength = Math.abs(x2 - x1);
if (segmentLength > maxSegmentLength) {
x = (x1 + x2) / 2;
if (this._judgeCoordinates(
flatCoordinates, 0, end, 2, x, y)) {
pointX = x;
maxSegmentLength = segmentLength;
xs.push(x);
}
}
x1 = x2;
}
if (isNaN(pointX)) {
pointX = extentCenter.x;
}
return new Point({
x: pointX,
y: y,
spatialReference: mapView.spatialReference
});
},
_judgeCoordinates: function (flatCoordinates, offset, end, stride, x, y) {
var wn = 0;
var x1 = flatCoordinates[end - stride];
var y1 = flatCoordinates[end - stride + 1];
for (; offset < end; offset += stride) {
var x2 = flatCoordinates[offset];
var y2 = flatCoordinates[offset + 1];
if (y1 <= y) {
if (y2 > y && ((x2 - x1) * (y - y1)) - ((x - x1) * (y2 - y1)) > 0) {
wn++;
}
} else if (y2 <= y && ((x2 - x1) * (y - y1)) - ((x - x1) * (y2 - y1)) < 0) {
wn--;
}
x1 = x2;
y1 = y2;
}
var result = (wn !== 0);
if (!result) {
return false;
}
return true;
}
};
return customLib;
});
小结
这两个算法基本上算是抄的,本人贡献的基本就只有两点根据屏幕距离绘制贝塞尔曲线中那个中点的计算,代码中的L即为待求中点距离两点连线的屏幕像素距离。
网友评论