揭开Spark Streaming神秘面纱④ - job 的提交

作者: 牛肉圆粉不加葱 | 来源:发表于2016-04-04 08:32 被阅读785次

前文揭开Spark Streaming神秘面纱③ - 动态生成 job
我们分析了 JobScheduler 是如何动态为每个 batch生成 jobs,本文将说明这些生成的 jobs 是如何被提交的。

在 JobScheduler 生成某个 batch 对应的 Seq[Job] 之后,会将 batch 及 Seq[Job] 封装成一个 JobSet 对象,JobSet 持有某个 batch 内所有的 jobs,并记录各个 job 的运行状态。

之后,调用JobScheduler#submitJobSet(jobSet: JobSet)来提交 jobs,在该函数中,除了一些状态更新,主要任务就是执行

jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))

即,对于 jobSet 中的每一个 job,执行jobExecutor.execute(new JobHandler(job)),要搞懂这行代码干了什么,就必须了解 JobHandler 及 jobExecutor。

JobHandler

JobHandler 继承了 Runnable,为了说明与 job 的关系,其精简后的实现如下:

private class JobHandler(job: Job) extends Runnable with Logging {
  import JobScheduler._

  def run() {
    _eventLoop.post(JobStarted(job))
    PairRDDFunctions.disableOutputSpecValidation.withValue(true) {
      job.run()
    }
    _eventLoop = eventLoop
    if (_eventLoop != null) {
      _eventLoop.post(JobCompleted(job))
    }
  }

}

JobHandler#run 方法主要执行了 job.run(),该方法最终将调用到
揭开Spark Streaming神秘面纱③ - 动态生成 job

中的『生成该 batch 对应的 jobs的Step2 定义的 jobFunc』,jonFunc 将提交对应 RDD DAG 定义的 job。

JobExecutor

知道了 JobHandler 是用来执行 job 的,那么 JobHandler 将在哪里执行 job 呢?答案是
jobExecutor,jobExecutor为 JobScheduler 成员,是一个线程池,在JobScheduler 主构造函数中创建,如下:

private val numConcurrentJobs = ssc.conf.getInt("spark.streaming.concurrentJobs", 1)
private val jobExecutor = ThreadUtils.newDaemonFixedThreadPool(numConcurrentJobs, "streaming-job-executor")

JobHandler 将最终在 线程池jobExecutor 的线程中被调用,jobExecutor的线程数可通过spark.streaming.concurrentJobs配置,默认为1。若配置多个线程,就能让多个 job 同时运行,若只有一个线程,那么同一时刻只能有一个 job 运行。

以上,即 jobs 被执行的逻辑。


欢迎关注我的微信公众号:FunnyBigData

FunnyBigData

相关文章

网友评论

    本文标题:揭开Spark Streaming神秘面纱④ - job 的提交

    本文链接:https://www.haomeiwen.com/subject/uciulttx.html