美文网首页arXiv daily
机器学习每日论文速递[08.16]

机器学习每日论文速递[08.16]

作者: arXiv每日论文速递 | 来源:发表于2019-08-17 14:11 被阅读29次

同步公众号(arXiv每日论文速递),回复'search 关键词'查询相关最新论文。(* ̄rǒ ̄)

cs.LG 方向,今日共计45篇

[cs.LG]:

【1】 PHYRE: A New Benchmark for Physical Reasoning
标题:PHYRE:物理推理的新基准
作者: Anton Bakhtin, Ross Girshick
链接:https://arxiv.org/abs/1908.05656

【2】 Learning Credible Deep Neural Networks with Rationale Regularization
标题:基于理论正则化的可信深度神经网络学习
作者: Mengnan Du, Xia Hu
备注:ICDM 2019
链接:https://arxiv.org/abs/1908.05601

【3】 Distinction Maximization Loss: Fast, Scalable, Turnkey, and Native Neural Networks Out-of-Distribution Detection simply by Replacing the SoftMax Loss
标题:差异化最大化损耗:快速、可扩展、交钥匙和本机神经网络分布外检测,只需更换SoftMax损耗即可
作者: David Macêdo
链接:https://arxiv.org/abs/1908.05569

【4】 Towards Automated Machine Learning: Evaluation and Comparison of AutoML Approaches and Tools
标题:走向自动机器学习:AutoML方法和工具的评价和比较
作者: Anh Truong, Reza Farivar
链接:https://arxiv.org/abs/1908.05557

【5】 Improving Randomized Learning of Feedforward Neural Networks by Appropriate Generation of Random Parameters
标题:通过适当生成随机参数改进前馈神经网络的随机学习
作者: Grzegorz Dudek
链接:https://arxiv.org/abs/1908.05542

【6】 Adaptive Regularization of Labels
标题:标签的自适应正则化
作者: Qianggang Ding, Shu-Tao Xia
链接:https://arxiv.org/abs/1908.05474

【7】 Mapping State Space using Landmarks for Universal Goal Reaching
标题:使用地标映射状态空间以实现通用目标
作者: Zhiao Huang, Hao Su
链接:https://arxiv.org/abs/1908.05451

【8】 Temporal Collaborative Ranking Via Personalized Transformer
标题:基于个性化转换器的时态协同排序
作者: Liwei Wu, James Sharpnack
链接:https://arxiv.org/abs/1908.05435

【9】 Sex Trafficking Detection with Ordinal Regression Neural Networks
标题:基于有序回归神经网络的性贩卖检测
作者: Longshaokan Wang, Sherrie Caltagirone
链接:https://arxiv.org/abs/1908.05434

【10】 Domain-adversarial Network Alignment
标题:域-对抗性网络对齐
作者: Huiting Hong, Ivor Tsang
链接:https://arxiv.org/abs/1908.05429

【11】 HONEM: Network Embedding Using Higher-Order Patterns in Sequential Data
标题:HONEM:使用序列数据中的高阶模式进行网络嵌入
作者: Mandana Saebi, Nitesh V Chawla
链接:https://arxiv.org/abs/1908.05387

【12】 Resonant Machine Learning Based on Complex Growth Transform Dynamical Systems
标题:基于复杂增长变换动力系统的共振机器学习
作者: Oindrila Chatterjee, Shantanu Chakrabartty
链接:https://arxiv.org/abs/1908.05377

【13】 Multimodal Emotion Recognition Using Deep Canonical Correlation Analysis
标题:基于深度典型相关分析的多模态情感识别
作者: Wei Liu, Bao-Liang Lu
链接:https://arxiv.org/abs/1908.05349

【14】 From Crystallized Adaptivity to Fluid Adaptivity in Deep Reinforcement Learning -- Insights from Biological Systems on Adaptive Flexibility
标题:深度强化学习中从结晶适应性到流体适应性-生物系统对适应性柔性的启示
作者: Malte Schilling, Frank W. Ohl
链接:https://arxiv.org/abs/1908.05348

【15】 Predicting Eating Events in Free Living Individuals -- A Technical Report
标题:预测自由生活个体的饮食事件-一份技术报告
作者: Jiayi Wang (1), USA)
链接:https://arxiv.org/abs/1908.05304

【16】 Distributionally Robust Optimization: A Review
标题:分布式鲁棒优化:综述
作者: Hamed Rahimian, Sanjay Mehrotra
链接:https://arxiv.org/abs/1908.05659

【17】 SenseBERT: Driving Some Sense into BERT
标题:SenseBERT:将一些理智带入伯特
作者: Yoav Levine, Yoav Shoham
链接:https://arxiv.org/abs/1908.05646

【18】 A Bayesian Choice Model for Eliminating Feedback Loops
标题:消除反馈回路的贝叶斯选择模型
作者: Gökhan Çapan, Ali Taylan Cemgil
链接:https://arxiv.org/abs/1908.05640

【19】 Deep learning on butterfly phenotypes tests evolution's oldest mathematical model
标题:对蝴蝶表型的深入学习检验了进化最古老的数学模型
作者: Jennifer F. Hoyal Cuthill, Blanca Huertas
链接:https://arxiv.org/abs/1908.05635

【20】 Visualizing and Understanding the Effectiveness of BERT
标题:形象化和理解BERT的有效性
作者: Yaru Hao, Ke Xu
备注:Accepted by EMNLP-19
链接:https://arxiv.org/abs/1908.05620

【21】 R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object
标题:R3Det:用于旋转对象的具有特征精化功能的精化单级检测器
作者: Xue Yang, Ang Li
链接:https://arxiv.org/abs/1908.05612

【22】 GraphSW: a training protocol based on stage-wise training for GNN-based Recommender Model
标题:GraphSW:一种基于阶段训练的GNN推荐模型训练协议
作者: Chang-You Tai, Shao-Yu Chu
链接:https://arxiv.org/abs/1908.05611

【23】 SHREWD: Semantic Hierarchy-based Relational Embeddings for Weakly-supervised Deep Hashing
标题:SHREWD:弱监督深度散列的基于语义层次的关系嵌入
作者: Heikki Arponen, Tom E Bishop
链接:https://arxiv.org/abs/1908.05602

【24】 Two-stage Federated Phenotyping and Patient Representation Learning
标题:两阶段联合表型与患者表征学习
作者: Dianbo Liu, Timothy Miller
备注:9 pages; Proceedings of the 18th BioNLP Workshop and Shared Task
链接:https://arxiv.org/abs/1908.05596

【25】 Combining Prediction Intervals on Multi-Source Non-Disclosed Regression Datasets
标题:多源非公开回归数据集的组合预测区间
作者: Ola Spjuth, Niharika Gauraha
备注:Accepted to 8th Symposium on Conformal and Probabilistic Prediction with Applications, Golden Sands, Bulgaria, 2019
链接:https://arxiv.org/abs/1908.05571

【26】 Deep reinforcement learning in World-Earth system models to discover sustainable management strategies
标题:在世界-地球系统模型中深入强化学习以发现可持续管理策略
作者: Felix M. Strnad, Jobst Heitzig
链接:https://arxiv.org/abs/1908.05567

【27】 Learning Interactive Behaviors for Musculoskeletal Robots Using Bayesian Interaction Primitives
标题:利用贝叶斯交互原语学习肌肉骨骼机器人的交互行为
作者: Joseph Campbell, Heni Ben Amor
链接:https://arxiv.org/abs/1908.05552

【28】 Sample-efficient Deep Reinforcement Learning with Imaginary Rollouts for Human-Robot Interaction
标题:用于人机交互的虚拟卷展栏样本有效深度强化学习
作者: Mohammad Thabet, Angelo Cangelosi
备注:Accepted for IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019)
链接:https://arxiv.org/abs/1908.05546

【29】 Hamming Sentence Embeddings for Information Retrieval
标题:信息检索中的Hamming语句嵌入
作者: Felix Hamann, Adrian Ulges
链接:https://arxiv.org/abs/1908.05541

【30】 To complete or to estimate, that is the question: A Multi-Task Approach to Depth Completion and Monocular Depth Estimation
标题:完成还是估计,这就是问题:深度完成和单目深度估计的多任务方法
作者: Amir Atapour-Abarghouei, Toby P. Breckon
备注:International Conference on 3D Vision (3DV) 2019
链接:https://arxiv.org/abs/1908.05540

【31】 Cosmological N-body simulations: a challenge for scalable generative models
标题:宇宙学N体模拟:对可伸缩生成模型的挑战
作者: Nathanaël Perraudin, Alexandre Réfrégier
链接:https://arxiv.org/abs/1908.05519

【32】 Bayesian Generative Models for Knowledge Transfer in MRI Semantic Segmentation Problems
标题:MRI语义分割问题中知识转移的贝叶斯生成模型
作者: Anna Kuzina, Evgeny Burnaev
链接:https://arxiv.org/abs/1908.05480

【33】 Accelerated CNN Training Through Gradient Approximation
标题:通过梯度逼近加速CNN训练
作者: Ziheng Wang, Sree Harsha Nelaturu
备注:An abridged version was presented at EMC^2 : Workshop On Energy Efficient Machine Learning And Cognitive Computing For Embedded Applications at ISCA 2019
链接:https://arxiv.org/abs/1908.05460

【34】 Feature-Less End-to-End Nested Term Extraction
标题:无特征端到端嵌套项提取
作者: Yuze Gao, Yu Yuan
链接:https://arxiv.org/abs/1908.05426

【35】 Towards Knowledge-Based Recommender Dialog System
标题:走向基于知识的推荐对话系统
作者: Qibin Chen, Jie Tang
备注:To appear in EMNLP 2019
链接:https://arxiv.org/abs/1908.05391

【36】 SFSegNet: Parse Freehand Sketches using Deep Fully Convolutional Networks
标题:SFSegNet:使用深度完全卷积网络解析徒手草图
作者: Junkun Jiang, Fei Wang
备注:Accepted for the 2019 International Joint Conference on Neural Networks (IJCNN-19)
链接:https://arxiv.org/abs/1908.05389

【37】 Maximum Relevance and Minimum Redundancy Feature Selection Methods for a Marketing Machine Learning Platform
标题:营销机器学习平台的最大相关性和最小冗余特征选择方法
作者: Zhenyu Zhao, Mallory Wang
链接:https://arxiv.org/abs/1908.05376

【38】 Uplift Modeling for Multiple Treatments with Cost Optimization
标题:基于成本优化的多个处理的上升力模型
作者: Zhenyu Zhao, Totte Harinen
链接:https://arxiv.org/abs/1908.05372

【39】 Robust One-Bit Recovery via ReLU Generative Networks: Improved Statistical Rates and Global Landscape Analysis
标题:通过Relu生成网络的健壮的一位恢复:改进的统计率和全局景观分析
作者: Shuang Qiu, Zhuoran Yang
链接:https://arxiv.org/abs/1908.05368

【40】 End-to-End Learning from Complex Multigraphs with Latent Graph Convolutional Networks
标题:基于隐图卷积网络的复杂多图端到端学习
作者: Floris Hermsen, Wolf Vos
链接:https://arxiv.org/abs/1908.05365

【41】 Sequential Computer Experimental Design for Estimating an Extreme Probability or Quantile
标题:估计极值概率或分位数的序贯计算机实验设计
作者: Hao Chen, William J. Welch
链接:https://arxiv.org/abs/1908.05357

【42】 Raw-to-End Name Entity Recognition in Social Media
标题:社交媒体中的原始到端名称实体识别
作者: Liyuan Liu, Jiawei Han
链接:https://arxiv.org/abs/1908.05344

【43】 Mixed pooling of seasonality in time series pallet forecasting
标题:时间序列托盘预测中季节性的混合池
作者: Hyunji Moon, Hyeonseop Lee
链接:https://arxiv.org/abs/1908.05339

【44】 Optimizing Ensemble Weights and Hyperparameters of Machine Learning Models for Regression Problems
标题:回归问题机器学习模型的集合权重和超参数优化
作者: Mohsen Shahhosseini, Hieu Pham
链接:https://arxiv.org/abs/1908.05287

【45】 A Weakly-Supervised Attention-based Visualization Tool for Assessing Political Affiliation
标题:一种弱监督的基于注意的可视化政治从属评估工具
作者: Srijith Rajamohan, Amit Ramesh
链接:https://arxiv.org/abs/1908.02282

翻译:腾讯翻译君

相关文章

网友评论

    本文标题:机器学习每日论文速递[08.16]

    本文链接:https://www.haomeiwen.com/subject/ugahsctx.html