continuous supervised learning 连续变量监督学习
regression 回归
continuous 有一定次序,且可以比较大小
1. Concept
slope:斜率
intercept:截距
coefficient:系数
2.Coding
import numpy
import matplotlib.pyplot as plt
from ages_net_worths import ageNetWorthData
ages_train, ages_test, net_worths_train, net_worths_test = ageNetWorthData()
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(ages_train, net_worths_train)
### get Katie's net worth (she's 27)
### sklearn predictions are returned in an array, so you'll want to index into
### the output to get what you want, e.g. net_worth = predict([[27]])[0][0] (not
### exact syntax, the point is the [0] at the end). In addition, make sure the
### argument to your prediction function is in the expected format - if you get
### a warning about needing a 2d array for your data, a list of lists will be
### interpreted by sklearn as such (e.g. [[27]]).
km_net_worth = 1.0 ### fill in the line of code to get the right value
km_net_worth = reg.predict([[27]])[0][0]
### get the slope
### again, you'll get a 2-D array, so stick the [0][0] at the end
slope = 0. ### fill in the line of code to get the right value
slope = reg.coef_[0][0]
### get the intercept
### here you get a 1-D array, so stick [0] on the end to access
### the info we want
intercept = 0. ### fill in the line of code to get the right value
intercept = reg.intercept_[0]
### get the score on test data
test_score = 0. ### fill in the line of code to get the right value
test_score = reg.score(ages_test,net_worths_test)
### get the score on the training data
training_score = 0. ### fill in the line of code to get the right value
training_score = reg.score(ages_train,net_worths_train)
def submitFit():
# all of the values in the returned dictionary are expected to be
# numbers for the purpose of the grader.
return {"networth":km_net_worth,
"slope":slope,
"intercept":intercept,
"stats on test":test_score,
"stats on training": training_score}
3.线性回归误差
最好的线性回归是最小化误差平方和的回归
4.最小化误差平方和的算法
ordinary least squares(OLS)
gradient descent
5.SSE的问题
sum of squared errors(SSE)
6.回归的R平方指标
0<R^2<1 越接近1,表明拟合表现的越好
优点:与训练点的数量无关,比误差平方和更可靠一点
在SKlearn中,用reg.score获取r的平方
7.分类与回归的比较
image.png8.多变量回归
image.png9.迷你项目
#!/usr/bin/python
"""
Starter code for the regression mini-project.
Loads up/formats a modified version of the dataset
(why modified? we've removed some trouble points
that you'll find yourself in the outliers mini-project).
Draws a little scatterplot of the training/testing data
You fill in the regression code where indicated:
"""
import sys
import pickle
sys.path.append("../tools/")
from feature_format import featureFormat, targetFeatureSplit
dictionary = pickle.load( open("../final_project/final_project_dataset_modified.pkl", "r") )
### list the features you want to look at--first item in the
### list will be the "target" feature
features_list = ["bonus", "salary"]
data = featureFormat( dictionary, features_list, remove_any_zeroes=True)
target, features = targetFeatureSplit( data )
### training-testing split needed in regression, just like classification
from sklearn.cross_validation import train_test_split
feature_train, feature_test, target_train, target_test = train_test_split(features, target, test_size=0.5, random_state=42)
train_color = "b"
test_color = "b"
### Your regression goes here!
### Please name it reg, so that the plotting code below picks it up and
### plots it correctly. Don't forget to change the test_color above from "b" to
### "r" to differentiate training points from test points.
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit(feature_train, target_train)
print reg.coef_
print reg.intercept_
print reg.score(feature_train, target_train)
print reg.score(feature_test, target_test)
### draw the scatterplot, with color-coded training and testing points
import matplotlib.pyplot as plt
for feature, target in zip(feature_test, target_test):
plt.scatter( feature, target, color=test_color )
for feature, target in zip(feature_train, target_train):
plt.scatter( feature, target, color=train_color )
### labels for the legend
plt.scatter(feature_test[0], target_test[0], color=test_color, label="test")
plt.scatter(feature_test[0], target_test[0], color=train_color, label="train")
### draw the regression line, once it's coded
try:
plt.plot( feature_test, reg.predict(feature_test) )
except NameError:
pass
plt.xlabel(features_list[1])
plt.ylabel(features_list[0])
plt.legend()
plt.show()
image.png
image.png
根据LTI回归奖金
我们有许多可用的财务特征,就预测个人奖金而言,其中一些特征可能比余下的特征更为强大。例如,假设你对数据做出了思考,并且推测出“long_term_incentive”特征(为公司长期的健康发展做出贡献的雇员应该得到这份奖励)可能与奖金而非工资的关系更密切。
证明你的假设是正确的一种方式是根据长期激励回归奖金,然后看看回归是否显著高于根据工资回归奖金。根据长期奖励回归奖金—测试数据的分数是多少?
features_list = ["bonus", "long_term_incentive"]
image.png
image.png
异常值破坏回归
这是下节课的内容简介,关于异常值的识别和删除。返回至之前的一个设置,你在其中使用工资预测奖金,并且重新运行代码来回顾数据。你可能注意到,少量数据点落在了主趋势之外,即某人拿到高工资(超过 1 百万美元!)却拿到相对较少的奖金。此为异常值的一个示例,我们将在下节课中重点讲述它们。
类似的这种点可以对回归造成很大的影响:如果它落在训练集内,它可能显著影响斜率/截距。如果它落在测试集内,它可能比落在测试集外要使分数低得多。就目前情况来看,此点落在测试集内(而且最终很可能降低分数)。
现在,我们将绘制两条回归线,一条在测试数据上拟合(有异常值),一条在训练数据上拟合(无异常值)。来看看现在的图形,有很大差别,对吧?单一的异常值会引起很大的差异。
image.png
网友评论