轻松理解傅里叶变换

作者: guanalex | 来源:发表于2019-07-12 22:20 被阅读163次

本文转载自https://www.jianshu.com/p/4cb34e716fd1

傅里叶变换

傅里叶变换实质涉及的是频域函数和时域函数的转换。

概念解释

a.先引入时域和频域这两个概念的解释。

时域

时域是真实世界,是惟一实际存在的域。可以这样理解,从我们出生开始,所接触的这个世界就是随着时间在变化的,是在运动的。

频域

频域它不是真实的,而是一个数学构造。如果说时域是惟一客观存在的域,那么频域是一个遵循特定规则的数学范畴,频域也被一些学者称为上帝视角。结合上面对时域的理解,如果时域是运动永不停止的,那么频域就是静止的。
正弦波是频域中唯一存在的波形,这是频域中最重要的规则,即正弦波是对频域的描述,因为频域中的任何波形都可用正弦波合成
通过图片来直观解释:
在时域里面,一段音乐是什么?是一个随着时间变化的震动(我们可以观察到钢琴的琴弦一会上一会下的摆动)。
相比较,在频域里面,一段音乐又是什么?是一个个音符,是乐谱。音符的个数是有限且固定的,但可以组合出无限多的乐曲。

image

b.接下来再讲解两个概念 :频谱和相位谱

频谱

在这里先引入一个通俗的解释:

image

如上图所示:
第一幅图是一个余弦波 cos(x)
第二幅图是 2 个余弦波的叠加 cos (x) +a.cos (3x)
第三幅图是 4 个余弦波的叠加
第四幅图是 10 个余弦波的叠加
那么问题来了:
随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,那么可以推出什么?
不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。

接下来我们换一个角度来看看:

image

从侧面看就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱。

对比展示:

image

可以看出,从时域来看,我们会看到一个近似为矩形的波,而我们知道这个矩形的波可以被差分为一些正弦波的叠加。而从频域方向来看,我们就看到了每一个正弦波的幅值,可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为 0 的正弦波。
正面--时域图像 侧面--频域图像
动图展示:

image
相位谱

频谱只代表了一个正弦函数的幅值,而要准确描述一个正弦函数,我们不仅需要幅值,还需要相位,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。
频谱的重点是侧面看,相位谱的重点则是从下面看。

image

如上图所示:投影点我们用粉色点来表示,红色的点表示离正弦函数频率轴最近的一个峰值,而相位差就是粉色点和红色点水平距离除以周期。将相位差画到一个坐标轴上就形成了相位谱。
【这里需要纠正一个概念:时间差并不是相位差。如果将全部周期看作2Pi或者360度的话,相位差则是时间差在一个周期中所占的比例。我们将时间差除周期再乘2Pi,就得到了相位差。】

傅里叶变换

为什么需要傅里叶变换?
如下图所示:上面我们能看到的仅仅是一个类似正弦波的波形,其幅值在按照一定的规律变化。如何记载这个波形的信息呢?尤其是量化的记载!是很困难的。那么这个时候引入傅里叶变换就可以得到一个频谱(幅值谱),主要包括3、5、7、9次谐波,一目了然!

image

傅里叶变换是一种信号分析方法,让我们对信号的构成和特点进行深入的、定量的研究。
把信号通过频谱的方式(包括幅值谱、相位谱和功率谱)进行准确的、定量的描述。
这就是傅里叶变换的主要目的。
(具体分析可参考:(https://www.sohu.com/a/224533027_99907714))

公式定义:

image

可以这样理解,
①为频率域的函数F(ω)表示为时间域的函数f(t)的积分形式
②为时间域的函数f(t)表示为频率域的函数F(ω)的积分

傅里叶变换过程图解:
image

具体看参考(https://blog.csdn.net/qq_33414271/article/details/79117586

其他性质
image image image

Matlab实现(频谱和相位谱)

%% 二维傅立叶变换
%读取图片
I=imread('Naruto.jpg');
img=rgb2gray(I);
%幅值图和相位谱
%进行傅立叶变换
f=fft2(img);        %傅里叶变换
f=fftshift(f);      %使图像对称,中心化
r=real(f);          %图像频域实部
i=imag(f);          %图像频域虚部
margin=log(sqrt(r.^2+i.^2));      %图像幅度谱,加log便于显示
phase=real(angle(f)*180/pi);     %图像相位谱
figure
subplot(1,3,1),imshow(img),title('源图像');
subplot(1,3,2),imshow(margin,[]),title('图像幅度谱');
subplot(1,3,3),imshow(phase,[]),title('图像相位谱');

参考(https://blog.csdn.net/qq_33414271/article/details/79117586
https://ww2.mathworks.cn/help/matlab/math/fouriertransforms.html#responsive_offcanvas

相关文章

  • 轻松理解傅里叶变换

    本文转载自https://www.jianshu.com/p/4cb34e716fd1 傅里叶变换 傅里叶变换实质...

  • 线性代数问题集合

    MIT有一课讲快速傅里叶变换,前置知识 欧拉公式,理解e和 三角函数的关系 傅里叶变换 傅里叶矩阵:https:/...

  • H264系列六 傅里叶变换

    一、转载自如何直观形象、生动有趣地给文科学生介绍傅里叶变换? 从数学的角度,提供一个形象有趣的解释。理解傅里叶变换...

  • 傅里叶变换(中)

    傅里叶级数构成 图形上我们了解什么是傅里叶变换,现在再从公式来推导一下傅里叶变换 这样一个公式就很好理解,首先我看...

  • 傅里叶变换(下)

    在上一篇中,我写到了傅里叶变换的来历以及直观的理解。关于傅里叶变换就只剩下它的性质,以及拉普拉斯变换和 Z-变换两...

  • 深入理解傅里叶变换

    深入理解傅里叶变换Mar 12, 2017 这原本是我在知乎上对傅立叶变换、拉普拉斯变换、Z变换的联系?为什么要进...

  • 快速傅里叶变换(FFT)理解

  • 关于傅里叶变换的理解

    傅里叶分析 傅里叶分析可分为傅里叶级数和傅里叶变换。傅里叶分析可以将任何周期函数看作是不同振幅,不同相位正弦波的叠...

  • 无标题文章

    傅里叶变换的本质是什么? 傅里叶变换的公式为 可以把傅里叶变换也成另外一种形式: 可以看出,傅里叶变换的本质是内积...

  • 2018Android实验室CV培训总结

    Android实验室CV培训 傅里叶变换(空间域 -> 频率域) 什么是傅里叶变换? 维基百科: 傅里叶变换(法语...

网友评论

    本文标题:轻松理解傅里叶变换

    本文链接:https://www.haomeiwen.com/subject/uhtlkctx.html