美文网首页
Science技术综述:光声成像

Science技术综述:光声成像

作者: 清新脱俗的傻瓜 | 来源:发表于2016-06-13 00:16 被阅读0次

生物通报道:每一种新型成像技术都像是有着神奇的光环,突然一下就能看到之前不能看到的事实,近期来自华盛顿大学的研究人员发表了题为“Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs”的综述文章,介绍的一种近年来迅速发展的成像技术:光声成像(photoacoustic tomography)更是如此。这一相关文章公布在Science杂志上。

文章的通讯作者是华盛顿大学著名生物医学光学专家汪立宏(Lihong V. Wang)教授,汪教授现任国际生物医学光学协会主席,华中科技大学“长江学者”讲座教授。汪教授在生物医学光学成像技术方面获得了多项成果,已经出版了两本专著,在Nature Biotechnology, Physical Review Letters, Physical Review, Optics Letters, 和IEEE Transactions上发表上百篇论文。

汪教授与来自华盛顿大学医学院的医师们共同将四种光声成像技术应用到了临床,其中一种能观察到前哨淋巴结活检术(Sentinel Lymph Node),这对于乳腺癌发生阶段具有重要意义。还有一种成像技术能监控机体对化疗的早期应答,第三种技术则能成像黑色素瘤,最后一种能观察消化道。

其中最令人激动的是光声成像能揭示组织氧利用的情况,因为过量的氧燃烧(称为高代谢,hypermetabolism)是癌症的一个重要标志。汪教授说,因为癌症早期阶段,癌症还没有扩散,因此早期预警诊断无需造影剂,这将改变癌症诊断。

(光声成像最令人激动的用途是检测氧代谢,氧代谢是癌症的一大标志,这将带给我们更早更有效的诊断方法。)

光声成像的原理

虽然我们已经接受了X射线成像所获得的灰色照片,但这只是我们机体内部“照片”的一个稀疏替代品。然而由于光子只能穿透约为一毫米的软体组织,之后就会散射出去,无法解析其途径,获得图形,因此我们只能接受这样的图片。

但是散射并没有破坏光子,这些基本粒子能直达7厘米的深处(大约3英寸)。光声成像的方法就在于将深处的吸收光转变成了声波,后者比光散射情况低一千倍。这可以通过某光波长纳秒脉冲激光照射成像组织来实现。

也就是说,当宽束短脉冲激光辐照生物组织时,位于组织体内的吸收体 (如肿瘤 )吸收脉冲光能量,导致升温膨胀,产生超声波。这时位于组织体表面的超声探测器件可以接收到这些外传的超声波,并依据探测到的光声信号来重建组织内光能量吸收分布的图像。

由此可见光声成像技术检测的是超声信号,反映的是光能量吸收的差异,所以这一技术能很好地结合光学和超声这两种成像技术各自的优点。而且由于探测的是超声信号,所以这一技术能克服了纯光学成像技术在成像深度与分辨率上不可兼得的不足。而且由于光声技术的图像差异来源于组织体光学吸收的不同,这就能够有效地补充纯超声成像技术在对比度和功能性方面的缺陷。

除此之外,光不同于X射线,不会产生任何健康威胁,而且光声成像也比X射线成像对比度更高,还能由“内源性”造影剂,获得彩色分子图像,这包括血红蛋白——随着获得和失去氧气,而改变颜色,还有黑色素,以及DNA——处于细胞核中的DNA比细胞质中的DNA更“暗”。

通过“外源性(引入)”造影剂的帮助,比如有机染料,或者能表达彩色分子的基因,光声成像也能对组织成像,比如淋巴结,这一结构易于周围环境混淆。汪教授还利用报告基因编码了彩色物质进行实验,这获得了良好的结果。

总体来说,光声成像这种基于生物组织内部光学吸收差异、以超声作媒介的无损生物光子成像方法,结合了纯光学成像的高对比度特性和纯超声成像的高穿透深度特性的优点,以超声探测器探测光声波代替光学成像中的光子检测,从原理上避开了光学散射的影响,可以提供高对比度和高分辨率的组织影像,为研究生物组织的结构形态、生理特征、代谢功能、病理特征等提供了重要手段,在生物医学临床诊断以及在体组织结构和功能成像领域具有广泛的应用前景。

相关文章

网友评论

      本文标题:Science技术综述:光声成像

      本文链接:https://www.haomeiwen.com/subject/uicedttx.html