美文网首页
Rust和大数据

Rust和大数据

作者: 天之見證 | 来源:发表于2024-01-17 11:26 被阅读0次

笔者从事大数据行业,最近对Rust语言比较感兴趣,特地关注了一下Rust在大数据生态中的建设情况,以下是一些由Rust编写的大数据框架,感兴趣的同学可以关注相关项目:

Apache Arrow Ballista

VS Spark

Although Ballista is largely inspired by Apache Spark, there are some key differences.

  • The choice of Rust as the main execution language means that memory usage is deterministic and avoids the overhead of GC pauses.
  • Ballista is designed from the ground up to use columnar data, enabling a number of efficiencies such as vectorized processing (SIMD and GPU) and efficient compression. Although Spark does have some columnar support, it is still largely row-based today.
  • The combination of Rust and Arrow provides excellent memory efficiency and memory usage can be 5x - 10x lower than Apache Spark in some cases, which means that more processing can fit on a single node, reducing the overhead of distributed compute.
  • The use of Apache Arrow as the memory model and network protocol means that data can be exchanged between executors in any programming language with minimal serialization overhead.

总结来说就是以下3点:

  1. Rust避免了GC,效率更高
  2. 纯列式存储
  3. 采用Arrow内存模型更高效

arroyo

VS Flink:

  • Serverless operations: Arroyo pipelines are designed to run in modern cloud environments, supporting seamless scaling, recovery, and rescheduling
  • High performance SQL: SQL is a first-class concern, with consistently excellent performance
  • Designed for non-experts: Arroyo cleanly separates the pipeline APIs from its internal implementation. You don’t need to be a streaming expert to build real-time data pipelines.

总结来说是以下3点:

  1. Serverless,更加适用与云生态
  2. 高性能SQL
  3. 易上手

Databend

VS Snowflake*

  • Cloud-Friendly: Seamlessly integrates with various cloud storages like AWS S3, Azure Blob, Google Cloud, and more.
  • High Performance: Built in Rust, utilizing SIMD and vectorized processing for rapid analytics. See ClickBench.
  • Cost-Efficient Elasticity: Innovative design for separate scaling of storage and computation, optimizing both costs and performance.
  • Easy Data Management: Integrated data preprocessing during ingestion eliminates the need for external ETL tools.
  • Data Version Control: Offers Git-like multi-version storage, enabling easy data querying, cloning, and reverting from any point in time.
  • Rich Data Support: Handles diverse data formats and types, including JSON, CSV, Parquet, ARRAY, TUPLE, MAP, and JSON.
  • AI-Enhanced Analytics: Offers advanced analytics capabilities with integrated AI Functions.
  • Community-Driven: Benefit from a friendly, growing community that offers an easy-to-use platform for all your cloud analytics.

总结来说是以下3点:

  1. 云友好
  2. 高性能+低成本
  3. 丰富的数据支持和管理
  4. 开源

相关文章

  • rust数据类型

    rust数据类型支持primitive和compound类型,见下图 primitive类型 compound数据...

  • 读Rust程序设计语言 - 04

    语言/Rust 数据类型 - Rust 程序设计语言 简体中文版 数据类型 rust 声明的变量一定属于某一数据类...

  • 【Rust】Rust和Java的对比--数据类型

    Rust和Java都是一种静态类型的语言。这意味着它必须在编译期知道所有变量的类型。 整形 Rust 长度有符号类...

  • Rust 数据类型

    在 Rust 中,每一个值都属于某一个 数据类型(data type),这告诉 Rust 它被指定为何种数据,以便...

  • 二零一七年二月

    技术 Rust 中文WikiRust PlaygroundRust学习资源和路线Rust in Detail: W...

  • 关于 Rust & WebAssembly

    本文主要对Rust 和 WebAssembly(简称wasm)做简单的介绍。 1. Rust Rust是一门系统编...

  • Rust语言编程实例100题-073

    Rust语言编程实例100题-073 题目:Rust变量冻结。当数据被相同的名称不变地绑定时,它还会冻结(free...

  • Rust Option 模式匹配简介

    Option Option是rust非常好用的数据结构,用来解决 Null 空指针问题,是rust安全基石重要一环...

  • rust语言特性汇总

    Rust是mozilla推出的一款系统级的编程语言,其两大特点在于零开销抽象和安全性。 rust特点类似于C++,...

  • CYBEX&LONGHASH赞助Rust.CC社区,共建技术社区

    在国内,Rust开发者们正在火热建设 Rust语言中文社区 rust.cc 和 rustforce.net。rus...

网友评论

      本文标题:Rust和大数据

      本文链接:https://www.haomeiwen.com/subject/upmlodtx.html