标签: 算法
正文
1.位运算
一.左移 <<
10 << 1 // -> 20
//左移就是将二进制全部往左移动,10 在二进制中表示为 1010 ,左移一位后变成 10100 ,转换为十进制也就是 20,所以基本可以把左移看成以下公式 a * (2 ^ b)
二.算数右移 >>
10 >> 1 // -> 5
//算数右移就是将二进制全部往右移动并去除多余的右边,10 在二进制中表示为 1010 ,右移一位后变成 101 ,转换为十进制也就是 5,所以基本可以把右移看成以下公式 int v = a / (2 ^ b)
右移很好用,比如可以用在二分算法中取中间值
13 >> 1 // -> 6
三.按位操作
1.按位与
每一位都为 1,结果才为 1
8 & 7 // -> 0
// 1000 & 0111 -> 0000 -> 0
2.按位或
其中一位为 1,结果就是 1
8 | 7 // -> 15
// 1000 | 0111 -> 1111 -> 15
3.按位异或
每一位都不同,结果才为 1
8 ^ 7 // -> 15
8 ^ 8 // -> 0
// 1000 ^ 0111 -> 1111 -> 15
// 1000 ^ 1000 -> 0000 -> 0
2.两个数不使用四则运算得出和
function sum(a, b) {
if (a == 0) return b
if (b == 0) return a
let newA = a ^ b
let newB = (a & b) << 1
return sum(newA, newB)
}
3.排序
function checkArray(array) {
if (!array) return
}
function swap(array, left, right) {
let rightValue = array[right]
array[right] = array[left]
array[left] = rightValue
}
一.冒泡排序
function bubble(array) {
checkArray(array);
for (let i = array.length - 1; i > 0; i--) {
// 从 0 到 `length - 1` 遍历
for (let j = 0; j < i; j++) {
if (array[j] > array[j + 1]) swap(array, j, j + 1)
}
}
return array;
}
二.插入排序
function insertion(array) {
checkArray(array);
for (let i = 1; i < array.length; i++) {
for (let j = i - 1; j >= 0 && array[j] > array[j + 1]; j--)
swap(array, j, j + 1);
}
return array;
}
三.选择排序
function selection(array) {
checkArray(array);
for (let i = 0; i < array.length - 1; i++) {
let minIndex = i;
for (let j = i + 1; j < array.length; j++) {
minIndex = array[j] < array[minIndex] ? j : minIndex;
}
swap(array, i, minIndex);
}
return array;
}
四.归并排序
function sort(array) {
checkArray(array);
mergeSort(array, 0, array.length - 1);
return array;
}
function mergeSort(array, left, right) {
// 左右索引相同说明已经只有一个数
if (left === right) return;
// 等同于 `left + (right - left) / 2`
// 相比 `(left + right) / 2` 来说更加安全,不会溢出
// 使用位运算是因为位运算比四则运算快
let mid = parseInt(left + ((right - left) >> 1));
mergeSort(array, left, mid);
mergeSort(array, mid + 1, right);
let help = [];
let i = 0;
let p1 = left;
let p2 = mid + 1;
while (p1 <= mid && p2 <= right) {
help[i++] = array[p1] < array[p2] ? array[p1++] : array[p2++];
}
while (p1 <= mid) {
help[i++] = array[p1++];
}
while (p2 <= right) {
help[i++] = array[p2++];
}
for (let i = 0; i < help.length; i++) {
array[left + i] = help[i];
}
return array;
}
五.快排
function sort(array) {
checkArray(array);
quickSort(array, 0, array.length - 1);
return array;
}
function quickSort(array, left, right) {
if (left < right) {
swap(array, , right)
// 随机取值,然后和末尾交换,这样做比固定取一个位置的复杂度略低
let indexs = part(array, parseInt(Math.random() * (right - left + 1)) + left, right);
quickSort(array, left, indexs[0]);
quickSort(array, indexs[1] + 1, right);
}
}
function part(array, left, right) {
let less = left - 1;
let more = right;
while (left < more) {
if (array[left] < array[right]) {
// 当前值比基准值小,`less` 和 `left` 都加一
++less;
++left;
} else if (array[left] > array[right]) {
// 当前值比基准值大,将当前值和右边的值交换
// 并且不改变 `left`,因为当前换过来的值还没有判断过大小
swap(array, --more, left);
} else {
// 和基准值相同,只移动下标
left++;
}
}
// 将基准值和比基准值大的第一个值交换位置
// 这样数组就变成 `[比基准值小, 基准值, 比基准值大]`
swap(array, right, more);
return [less, more];
}
六.堆排序
function heap(array) {
checkArray(array);
// 将最大值交换到首位
for (let i = 0; i < array.length; i++) {
heapInsert(array, i);
}
let size = array.length;
// 交换首位和末尾
swap(array, 0, --size);
while (size > 0) {
heapify(array, 0, size);
swap(array, 0, --size);
}
return array;
}
function heapInsert(array, index) {
// 如果当前节点比父节点大,就交换
while (array[index] > array[parseInt((index - 1) / 2)]) {
swap(array, index, parseInt((index - 1) / 2));
// 将索引变成父节点
index = parseInt((index - 1) / 2);
}
}
function heapify(array, index, size) {
let left = index * 2 + 1;
while (left < size) {
// 判断左右节点大小
let largest =
left + 1 < size && array[left] < array[left + 1] ? left + 1 : left;
// 判断子节点和父节点大小
largest = array[index] < array[largest] ? largest : index;
if (largest === index) break;
swap(array, index, largest);
index = largest;
left = index * 2 + 1;
}
}
4.动态规划
一.斐波那契数列
function fib(n) {
if (n < 2 && n >= 0) return n;
return fib(n - 1) + fib(n - 2)
}
fib(10)//55
以上代码已经可以完美的解决问题。但是以上解法却存在很严重的性能问题,当 n 越大的时候,需要的时间是指数增长的,这时候就可以通过动态规划来解决这个问题。
动态规划的本质其实就是两点
自底向上分解子问题
通过变量存储已经计算过的解
根据上面两点,我们的斐波那契数列的动态规划思路也就出来了
斐波那契数列从 0 和 1 开始,那么这就是这个子问题的最底层
通过数组来存储每一位所对应的斐波那契数列的值
function fib(n) {
let array = new Array(n + 1).fill(null)
array[0] = 0
array[1] = 1
for (let i = 2; i <= n; i++) {
array[i] = array[i - 1] + array[i - 2]
}
return array[n]
}
fib(10)
网友评论