本文的代码是基于CF2做的改进,将残差神经网络作为特征提取工具用于物体跟踪。
与上一篇结合起来阅读效果更佳哦。
下面是具体做法。
global net里面的net是在以下代码里初始化的。
出错 initial_net (line 5)
net = load(fullfile('model', 'imagenet-vgg-verydeep-19.mat'));
出错 get_features (line 9)
initial_net();
把VGG-19换成Resnet
步入到get_feature的initial_net,把里面的vgg-verydeep19改成resnet50
搞清楚vl_simplenn_tidy(好像是一个把搞进来的网络更规范的的函数),没啥用,我就把它注释掉了。
改进地方:
1.把初始化网络只留下一行
function initial_net()
% INITIAL_NET: Loading VGG-Net-19
global net;
net = load(fullfile('model', 'imagenet-resnet-50-dag.mat'));
% Remove the fully connected layers and classification layer
%net.layers(37+1:end) = [];
% % Switch to GPU mode
% global enableGPU;
% if enableGPU
% net = vl_simplenn_move(net, 'gpu');
% end
%
% net=vl_simplenn_tidy(net);
end
2.get_feature好多都改了
3.DAGNetwork里面的Line335的activationBuffer是每层的输出,在这个函数里面做了一些改进:将输出从Y改成activationBuffer,然后把Y注释掉,因为用不上。下面是predict输出网络结果的函数改进
function activationsBuffer = predict(this, X)
% Wrap X in cell if needed
X = iWrapInCell(X);
% Apply any transforms
X = this.applyTransformsForInputLayers(X);
% Allocate space for the activations.
activationsBuffer = cell(this.NumActivations,1);
% Loop over topologically sorted layers to perform forward
% propagation. Clear memory when activations are no longer
% needed.
for i = 1:this.NumLayers
if isa(this.Layers{i},'nnet.internal.cnn.layer.ImageInput')
[~, currentInputLayer] = find(this.InputLayerIndices == i);
outputActivations = this.Layers{i}.predict(X{currentInputLayer});
else
XForThisLayer = iGetTheseActivationsFromBuffer( ...
activationsBuffer, ...
this.ListOfBufferInputIndices{i});
outputActivations = this.Layers{i}.predict(XForThisLayer);
end
activationsBuffer = iAssignActivationsToBuffer( ...
activationsBuffer, ...
this.ListOfBufferOutputIndices{i}, ...
outputActivations);
% activationsBuffer = iClearActivationsFromBuffer( ...
% activationsBuffer, ...
% this.ListOfBufferIndicesForClearingForward{i});
end
% Return activations corresponding to output layers.
% Y = { activationsBuffer{ ...
% [this.ListOfBufferOutputIndices{this.OutputLayerIndices}] ...
% } };
end
DAGNetwork的Line298 YBatch变成了输出,然后将299---310注释掉了,Line183的变量换成YBatch, function YBatch = predict(this, X, varargin),然后Line363的score变成了每层的输出,Line366---388都被注释了,因为不用输出label,然后Line313做如下更改
function [labelsToReturn, scoresToReturn] = classify(this, X, varargin)
改成
function scores = classify(this, X, varargin)
最后把get_features的Line36改成
[label,scores] = classify(net,img);
res = classify(net,img);
还有Line47结果换一换啊
% x = res(layers(ii)).x;
x = res{1,1}{(layers{ii}),1};
然后运行成功了,但是效果不好,好了,我就是个天才。
网友评论