美文网首页
ThreadPoolExecutor源码分析

ThreadPoolExecutor源码分析

作者: 无敌小圈圈 | 来源:发表于2018-12-17 19:52 被阅读0次

    由于工作需要,需要进行并行查询数据库,返回结果后进行计算,也就是说各个线程要全部运行完毕,才能进行下一步的计算,这时候要用到CountDownLatch。
    先上代码,实现的比较简单,但是这不是重点,哈哈哈,主要是分析Executor相关的原理。
    线程池相关参数及含义等可参考下面这篇文章,内部也有部分源码分析,但是个人认为不够详尽
    https://blog.csdn.net/baidu_37107022/article/details/77415936

    package com.gome.mars.utils;
    
    import java.util.concurrent.*;
    
    /**
     * @ClassName
     * @Description TODO
     * @Author oo
     * @Date 2018/12/10 18:00
     * @Version 1.0
     **/
    public class SimpleParallelTaskExecutor {
        private CountDownLatch countDownLatch;
        // 此处实现了固定大小的线程池,可根据需要进行其他实现,每次不再新建线程池实例
        private static ExecutorService executor=Executors.newFixedThreadPool(20);
        //构造方法参数为并行线程的数量,并且每次new CountDownLatch对象,因为不可重复使用
        public SimpleParallelTaskExecutor(Integer nThreads) {
            this.countDownLatch = new CountDownLatch(nThreads);
        }
        //调用此方法向线程池中添加任务,此处对Callable进行了简单包装,为了执行完任务调用countDownLatch.countDown();
        public <V> Future<V> addTask(Callable<V> task) throws Exception {
            return executor.submit(new WrapperThread<V>(task,countDownLatch));
        }
        //可设置超时时间,检查任务是否运行完毕
        public boolean checkDone(long milliseconds) throws InterruptedException {
            return countDownLatch.await(milliseconds, TimeUnit.MILLISECONDS);
        }
        //Callable包装类,为了执行完任务调用countDownLatch.countDown();
        public class WrapperThread<V> implements Callable<V> {
            private Callable<? extends V> callable;
            private CountDownLatch countDownLatch;
    
            public WrapperThread(Callable callable, CountDownLatch countDownLatch) {
                this.callable = callable;
                this.countDownLatch = countDownLatch;
            }
    
            @Override
            public V call() throws Exception {
                //此处直接调用callable.call();和直接调用thread.run()类似,没有起新的线程此处和加入的任务内部是同一个线程。
                V call = callable.call();
                this.countDownLatch.countDown();
                return call;
            }
        }
        public static void main(String[] args) throws Exception {
            SimpleParallelTaskExecutor simpleParallelTaskExecutor = new SimpleParallelTaskExecutor(2);
            Future<Integer> integerFuture = simpleParallelTaskExecutor.addTask(() -> {
                //此处模拟执行数据查询等任务
                Thread.sleep(2000);
                return 1;
            });
            Future<Integer> integerFuture1 = simpleParallelTaskExecutor.addTask(() -> {
                Thread.sleep(1000);
                return 2;
            });
            simpleParallelTaskExecutor.checkDone(3000);
            Integer integer = integerFuture.get();
            Integer integer1 = integerFuture1.get();
            System.out.println(integer);
            System.out.println(integer1); 
        }
    
    }
    
    Executor框架

    我们在addTask方法处打断点,进入submit方法,可以看出我们进入的是AbstractExecutorService类的submit方法,此方法接受一个callable对象,返回Future<T>对象,我们可以在Future中获取执行结果。

        /**
         * @throws RejectedExecutionException {@inheritDoc}
         * @throws NullPointerException       {@inheritDoc}
         */
        public <T> Future<T> submit(Callable<T> task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<T> ftask = newTaskFor(task);
            execute(ftask);
            return ftask;
        } 
     /**
         * @throws RejectedExecutionException {@inheritDoc}
         * @throws NullPointerException       {@inheritDoc}
         */
        public Future<?> submit(Runnable task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<Void> ftask = newTaskFor(task, null);
            execute(ftask);
            return ftask;
        }
        /**
         * @throws RejectedExecutionException {@inheritDoc}
         * @throws NullPointerException       {@inheritDoc}
         */
        public <T> Future<T> submit(Runnable task, T result) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<T> ftask = newTaskFor(task, result);
            execute(ftask);
            return ftask;
        }
    

    submit方法有几个重载方法,都是通过NewTaskFor方法,将任务包装成一个RunnableFuture对象,只不过Runnable没有返回结果,结果类型为null。
    下面我们看看NewTaskFor都做了些什么事情。

         /**
         * Returns a {@code RunnableFuture} for the given runnable and default
         * value.
         *
         * @param runnable the runnable task being wrapped
         * @param value the default value for the returned future
         * @param <T> the type of the given value
         * @return a {@code RunnableFuture} which, when run, will run the
         * underlying runnable and which, as a {@code Future}, will yield
         * the given value as its result and provide for cancellation of
         * the underlying task
         * @since 1.6
         */
        protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
            return new FutureTask<T>(runnable, value);
        }
    
        /**
         * Returns a {@code RunnableFuture} for the given callable task.
         *
         * @param callable the callable task being wrapped
         * @param <T> the type of the callable's result
         * @return a {@code RunnableFuture} which, when run, will call the
         * underlying callable and which, as a {@code Future}, will yield
         * the callable's result as its result and provide for
         * cancellation of the underlying task
         * @since 1.6
         */
        protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
            return new FutureTask<T>(callable);
        }
    

    可以看出,直接创建了FutureTask对象,并且返回。所以,加入线程池的任务都被包装成FutureTask对象,没有返回值的返回值为空。
    下面主要看execute(ftask);方法
    ThreadPoolExecutor中的execute方法。
    用一个32位数的高3位表示线程池状态,低29位表示正在运行的线程数量

    public class ThreadPoolExecutor extends AbstractExecutorService {
        //初始状态为Running状态且运行线程数为0,所以是-1和0按位取或
        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        //32-3为29
        private static final int COUNT_BITS = Integer.SIZE - 3;
        //1左移29位再减1,低29位全为1,高位位0;
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
        private static final int RUNNING    = -1 << COUNT_BITS;
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        private static final int STOP       =  1 << COUNT_BITS;
        private static final int TIDYING    =  2 << COUNT_BITS;
        private static final int TERMINATED =  3 << COUNT_BITS;
    
        // Packing and unpacking ctl
        //低29位取反都为0,高三位都为1,再和c进行按位与,只留下高三位,从而获取线程池状态
        private static int runStateOf(int c)     { return c & ~CAPACITY; }
        //获取工作线程数量,与上面类似,取得低29位。
        private static int workerCountOf(int c)  { return c & CAPACITY; }
        private static int ctlOf(int rs, int wc) { return rs | wc; }
    }
    

    在程序运行中,反复使用了这几个方法,用来获取工作线程数或线程池状态

    /**
         * Executes the given task sometime in the future.  The task
         * may execute in a new thread or in an existing pooled thread.
         *
         * If the task cannot be submitted for execution, either because this
         * executor has been shutdown or because its capacity has been reached,
         * the task is handled by the current {@code RejectedExecutionHandler}.
         *
         * @param command the task to execute
         * @throws RejectedExecutionException at discretion of
         *         {@code RejectedExecutionHandler}, if the task
         *         cannot be accepted for execution
         * @throws NullPointerException if {@code command} is null
         */
        public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             */
            //获取c的值,判断工作线程数是否小于设定的核心线程数
            int c = ctl.get();
            if (workerCountOf(c) < corePoolSize) {
                //如果小于核心线程数,直接新建线程,新建成功则返回
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            //如果上变判断不成立,那么工作线程数量大于等于核心线程数,
            //或者新建线程没有成功,那么如果线程池接受新任务,则往队列里添加一个任务
            //如果线程池中工作线程数已经达到了核心线程数,并且没有设置空闲销毁时间
            //新任务到来就只是向阻塞队列里增加一条新任务,线程池是如何拿到这个任务并执行的呢?
            if (isRunning(c) && workQueue.offer(command)) {
                //再次检查,防止并发状态下,线程池状态等有变化
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))
                reject(command);
        }
    

    重点方法是addWorker方法下面进一步分析

     /**
         * Checks if a new worker can be added with respect to current
         * pool state and the given bound (either core or maximum). If so,
         * the worker count is adjusted accordingly, and, if possible, a
         * new worker is created and started, running firstTask as its
         * first task. This method returns false if the pool is stopped or
         * eligible to shut down. It also returns false if the thread
         * factory fails to create a thread when asked.  If the thread
         * creation fails, either due to the thread factory returning
         * null, or due to an exception (typically OutOfMemoryError in
         * Thread.start()), we roll back cleanly.
         *
         * @param firstTask the task the new thread should run first (or
         * null if none). Workers are created with an initial first task
         * (in method execute()) to bypass queuing when there are fewer
         * than corePoolSize threads (in which case we always start one),
         * or when the queue is full (in which case we must bypass queue).
         * Initially idle threads are usually created via
         * prestartCoreThread or to replace other dying workers.
         *
         * @param core if true use corePoolSize as bound, else
         * maximumPoolSize. (A boolean indicator is used here rather than a
         * value to ensure reads of fresh values after checking other pool
         * state).
         * @return true if successful
         */
        //第二个参数表示是否是核心线程,比较工作线程数目时,分别和corePoolSize 或者maximumPoolSize进行比较
        private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                //此处为何还要有第二个判断?
                //我们分析一下当rs==SHUTDOWN 时,什么情况会返回false
                //1.线程池shutdown, 此时firstTask为null 并且workQueue为空时
                //2.线程池shutdown,firstTask不为null这时 workQueue状态已经没有用了
                //SHUTDOWN状态虽然不接受新任务,但是队列里的任务会执行完,
                //也就是说当线程池为SHUTDOWN时,为了执行完队列中的任务,
                //会不断添加firstTask为null的任务,firstTask为null代表要取队列中的任务
                //第一种情况表示队列中的任务已经清空了,无需再循环了,线程池可能将要进入stop状态了
                //第二种情况表示新任务到来,线程池已经不再接受了,所以返回false
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
                //内层循环主要工作就是cas为增加一个工作线程
                for (;;) {
                    int wc = workerCountOf(c);
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    //增加成功就退出外层循环
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    //线程池状态状态有变化就继续执行外层循环
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
    
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                //包含一个Thread对象,传入的是Worker对象本身,后边有详细解释。
                w = new Worker(firstTask);
                final Thread t = w.thread;
                if (t != null) {
                    final ReentrantLock mainLock = this.mainLock;
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int rs = runStateOf(ctl.get());
                        //正常运行状态或者队列中还有未执行的任务
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            workers.add(w);
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {
                        //如果线程添加成功,就启动线程,执行任务。实际是执行runWorker方法。
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
    

    Worker实现了Runnable接口,继承AbstractQueuedSynchronizer类,所以本身就是一个线程类,有自己的run方法。

    /**
         * Class Worker mainly maintains interrupt control state for
         * threads running tasks, along with other minor bookkeeping.
         * This class opportunistically extends AbstractQueuedSynchronizer
         * to simplify acquiring and releasing a lock surrounding each
         * task execution.  This protects against interrupts that are
         * intended to wake up a worker thread waiting for a task from
         * instead interrupting a task being run.  We implement a simple
         * non-reentrant mutual exclusion lock rather than use
         * ReentrantLock because we do not want worker tasks to be able to
         * reacquire the lock when they invoke pool control methods like
         * setCorePoolSize.  Additionally, to suppress interrupts until
         * the thread actually starts running tasks, we initialize lock
         * state to a negative value, and clear it upon start (in
         * runWorker).
         */
        private final class Worker
            extends AbstractQueuedSynchronizer
            implements Runnable
        {
            /**
             * This class will never be serialized, but we provide a
             * serialVersionUID to suppress a javac warning.
             */
            private static final long serialVersionUID = 6138294804551838833L;
    
            /** Thread this worker is running in.  Null if factory fails. */
            final Thread thread;
            /** Initial task to run.  Possibly null. */
            Runnable firstTask;
            /** Per-thread task counter */
            volatile long completedTasks;
    
            /**
             * Creates with given first task and thread from ThreadFactory.
             * @param firstTask the first task (null if none)
             */
            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                //新建Thread对象,传入自身
                this.thread = getThreadFactory().newThread(this);
            }
    
            /** Delegates main run loop to outer runWorker  */
            //当调用Thread.start()时,新线程启动,调用runWorker方法,传入自身
            public void run() {
                runWorker(this);
            }
    
            // Lock methods
            //
            // The value 0 represents the unlocked state.
            // The value 1 represents the locked state.
    
            protected boolean isHeldExclusively() {
                return getState() != 0;
            }
    
            protected boolean tryAcquire(int unused) {
                if (compareAndSetState(0, 1)) {
                    setExclusiveOwnerThread(Thread.currentThread());
                    return true;
                }
                return false;
            }
    
            protected boolean tryRelease(int unused) {
                setExclusiveOwnerThread(null);
                setState(0);
                return true;
            }
    
            public void lock()        { acquire(1); }
            public boolean tryLock()  { return tryAcquire(1); }
            public void unlock()      { release(1); }
            public boolean isLocked() { return isHeldExclusively(); }
    
            void interruptIfStarted() {
                Thread t;
                if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    }
                }
            }
        }
    

    runWorker方法是真正执行用户传进来的任务的地方,并且可以重写beforeExecute以及afterExecute方法,再任务执行前后加入自定义操作。

    /**
         * Main worker run loop.  Repeatedly gets tasks from queue and
         * executes them, while coping with a number of issues:
         *
         * 1. We may start out with an initial task, in which case we
         * don't need to get the first one. Otherwise, as long as pool is
         * running, we get tasks from getTask. If it returns null then the
         * worker exits due to changed pool state or configuration
         * parameters.  Other exits result from exception throws in
         * external code, in which case completedAbruptly holds, which
         * usually leads processWorkerExit to replace this thread.
         *
         * 2. Before running any task, the lock is acquired to prevent
         * other pool interrupts while the task is executing, and then we
         * ensure that unless pool is stopping, this thread does not have
         * its interrupt set.
         *
         * 3. Each task run is preceded by a call to beforeExecute, which
         * might throw an exception, in which case we cause thread to die
         * (breaking loop with completedAbruptly true) without processing
         * the task.
         *
         * 4. Assuming beforeExecute completes normally, we run the task,
         * gathering any of its thrown exceptions to send to afterExecute.
         * We separately handle RuntimeException, Error (both of which the
         * specs guarantee that we trap) and arbitrary Throwables.
         * Because we cannot rethrow Throwables within Runnable.run, we
         * wrap them within Errors on the way out (to the thread's
         * UncaughtExceptionHandler).  Any thrown exception also
         * conservatively causes thread to die.
         *
         * 5. After task.run completes, we call afterExecute, which may
         * also throw an exception, which will also cause thread to
         * die. According to JLS Sec 14.20, this exception is the one that
         * will be in effect even if task.run throws.
         *
         * The net effect of the exception mechanics is that afterExecute
         * and the thread's UncaughtExceptionHandler have as accurate
         * information as we can provide about any problems encountered by
         * user code.
         *
         * @param w the worker
         */
        final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
                //如果task!=null 就执行当前任务(工作线程数小于核心现场数),
                //如果为null(队列中有任务)就在队列中获取一个任务,
                //此处可以看出,如果队列中有任务,会一直while循环,直到队列为空,
                //队列为空时,由于是阻塞队列,线程将阻塞在这里,直到又有任务添加进队列
                while (task != null || (task = getTask()) != null) {
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        //空方法
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                            //真正执行我们的任务
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            //空方法
                            afterExecute(task, thrown);
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                //此方法用于处理当前工作线程退出的相关事宜
                processWorkerExit(w, completedAbruptly);
            }
        }
    

    当此工作线程退出以后,相关清理及记录工作,当程序抛出异常,或队列不为空而没有工作线程时或工作线程数少于核心线程数时,会继续addWorker(null, false);替换当前工作线程。

    /**
         * Performs cleanup and bookkeeping for a dying worker. Called
         * only from worker threads. Unless completedAbruptly is set,
         * assumes that workerCount has already been adjusted to account
         * for exit.  This method removes thread from worker set, and
         * possibly terminates the pool or replaces the worker if either
         * it exited due to user task exception or if fewer than
         * corePoolSize workers are running or queue is non-empty but
         * there are no workers.
         *
         * @param w the worker
         * @param completedAbruptly if the worker died due to user exception
         */
        private void processWorkerExit(Worker w, boolean completedAbruptly) {
            if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
                decrementWorkerCount();
    
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                completedTaskCount += w.completedTasks;
                workers.remove(w);
            } finally {
                mainLock.unlock();
            }
            //一个工作线程退出后会尝试终止线程池,通过判断当前线程池的状态,如果终止成功则不会进入下边的if判断,否则进入if判断
            tryTerminate();
    
            int c = ctl.get();
            //判断线程池是否是running或shutdown状态,再次判断completedAbruptly,
            //这个变量表示是否被打断,正常执行完毕一般为false,如果满足是就继续判断是否继续addWorker
            if (runStateLessThan(c, STOP)) {
                if (!completedAbruptly) {
                    int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                    if (min == 0 && ! workQueue.isEmpty())
                        min = 1;
                    //1.如果设置了allowCoreThreadTimeOut 参数且队列为非空,则工作线程数为0的时候才addWorker
                    //如果设置了allowCoreThreadTimeOut 且队列为空,则直接返回,不addWorker
                    //如果没有设置allowCoreThreadTimeOut ,只要工作线程数小于核心线程数,都addWorker
                    if (workerCountOf(c) >= min)
                        return; // replacement not needed
                }
                //关键这在这,加入一条firstTask为null的非核心线程任务,
                addWorker(null, false);
            }
        }
    

    总结

    线程池执行过程:

    1. submit(Callable<T> task)方法后,将task包装成一个FutureTask对象;
    2. 执行execute(ftask)方法
      if(工作线程数<核心线程数){
      addWorker(Runnable firstTask, boolean core)
      添加成功 return;
      }
      核心线程数已经达到最大
      if(线程池是running状态){
      向队列中添加一个任务
      workQueue.offer(command)
      }
    3. addWorker(Runnable firstTask, boolean core)
      自旋尝试改变workerCount数量
      compareAndIncrementWorkerCount(c)
      成功
      new Worker(firstTask);
      并启动线程
    4. runWorker(Worker w)
      while(如果当前Worker中task!=null 执行此任务
      否则从队列中task = getTask())
      调用task.run();
      队列为空时getTask()方法中根据参数设定判断何时返回null何时阻塞
    5. 当一个工作线程退出后执行processWorkerExit(w, completedAbruptly);方法中还会尝试终止线程池,如果线程池终止成功,则直接return
      否则判断是否继续addWorker(null, false)替换当前线程

    over
    有不正确的地方欢迎指正!

    相关文章

      网友评论

          本文标题:ThreadPoolExecutor源码分析

          本文链接:https://www.haomeiwen.com/subject/urzbhqtx.html