- Problems of Boolean Circuits
- 经典计算:Lecture2 Boolean Circuits I
- 经典计算:Lecture3 Boolean Circuits I
- Accuracy during lamination and p
- Electric Circuits with Mastering
- Cortical microcircuits as gated-
- Interface Circuits for Microsens
- Counterfeit Integrated Circuits
- Designing Asynchronous Circuits
- Principles of Electric Circuits
2.1 Is set a complete basis? Construct an algorithm that determines whether a given set of Boolean functions A constitutes a complete basis. (Functions are represented by tables.)
proof:
2.2 Maximum complexity. Let be the maximum complexity for Boolean functions in variables. Prove that for sufficiently large .
proof: 考察的是个变量的boolean function,要使它的复杂度达到最大,也就是尽可能的多用到变量。考虑total function,而且值都是1,它的DNF表达式为:
上界(upper bound): 根据DNF的表达式,每一个子函数,也就是conjunction的部分,是形如其中最多有个operation;
在disjunction部分中,{}共有个元素,所以, for large 。
下界(lower bound):对比个变量的Boolean function和给定size大小的circuit的数量。假定选择了标准完备基,在k-th次assignment的时候,因为是从个输入变量和个辅助变量中选两个,最多有种可能性。所以size为的circuit的数量不会超过而个变量的Boolean function的数量是个。如果则Boolean function的数量比circuit的数量多,从而可以得到。因为是当输入为长时,上面不等式右侧那么多个circuit的最大的size,而长输入的Boolean function总共的数量是左侧的,所以肯定有别的Boolean function的复杂度比大,题干里说的是maximum complexity。或者就是对两边的集合里的元素取size的maximum,得到。
当时,上述的不等式成立,for sufficiently large n。从而可以推出想要的不等式。
2.3 Prove that there exists a decidable predicate that belongs to P/poly but not to P.
Remark2.1中,对的选择,选可计算的,但难计算的,图灵机在poly(n)时间内不能跑出结果来。
网友评论