范数

作者: 活体检测业余爱好 | 来源:发表于2017-07-07 18:59 被阅读202次

1、核范数||.||_*:是指矩阵奇异值的和,目的是约束Low-Rank(低秩)

核范数||W||*是指矩阵奇异值的和,英文称呼叫Nuclear Norm。这个相对于上面火热的L1和L2来说,可能大家就会陌生点。那它是干嘛用的呢?霸气登场:约束Low-Rank(低秩)。OK,OK,那我们得知道Low-Rank是啥?用来干啥的?

我们先来回忆下线性代数里面“秩”到底是啥?举个简单的例子吧:

对上面的线性方程组,第一个方程和第二个方程有不同的解,而第2个方程和第3个方程的解完全相同。从这个意义上说,第3个方程是“多余”的,因为它没有带来任何的信息量,把它去掉,所得的方程组与原来的方程组同解。为了从方程组中去掉多余的方程,自然就导出了“矩阵的秩”这一概念。

还记得我们怎么手工求矩阵的秩吗?为了求矩阵A的秩,我们是通过矩阵初等变换把A化为阶梯型矩阵,若该阶梯型矩阵有r个非零行,那A的秩rank(A)就等于r。从物理意义上讲,矩阵的秩度量的就是矩阵的行列之间的相关性。如果矩阵的各行或列是线性无关的,矩阵就是满秩的,也就是秩等于行数。回到上面线性方程组来说吧,因为线性方程组可以用矩阵描述嘛。秩就表示了有多少个有用的方程了。上面的方程组有3个方程,实际上只有2个是有用的,一个是多余的,所以对应的矩阵的秩就是2了。

OK。既然秩可以度量相关性,而矩阵的相关性实际上有带有了矩阵的结构信息。如果矩阵之间各行的相关性很强(mine:这里应该是认为每列向量是一个多维特征,行对应维度),那么就表示这个矩阵实际可以投影到更低维的线性子空间,也就是用几个向量就可以完全表达了,它就是低秩的。所以我们总结的一点就是:如果矩阵表达的是结构性信息,例如图像、用户-推荐表等等,那么这个矩阵各行之间存在这一定的相关性,那这个矩阵一般就是低秩的。

如果X是一个m行n列的数值矩阵,rank(X)是X的秩,假如rank (X)远小于m和n,则我们称X是低秩矩阵。低秩矩阵每行或每列都可以用其他的行或列线性表出,可见它包含大量的冗余信息。利用这种冗余信息,可以对缺失数据进行恢复,也可以对数据进行特征提取。

好了,低秩有了,那约束低秩只是约束rank(w)呀,和我们这节的核范数有什么关系呢?他们的关系和L0与L1的关系一样。因为rank()是非凸的,在优化问题里面很难求解,那么就需要寻找它的凸近似来近似它了。对,你没猜错,rank(w)的凸近似就是核范数||W||*

好了,到这里,我也没什么好说的了,因为我也是稍微翻看了下这个东西,所以也还没有深入去看它。但我发现了这玩意还有很多很有意思的应用,下面我们举几个典型的吧。

2、

对p = 2,这称为弗罗贝尼乌斯范数(Frobenius norm)或希尔伯特-施密特范数(Hilbert–Schmidt norm)

相关文章

  • 三种范数

    上的三种常用的范数:,称为1-范数。称为2-范数。称为-范数。

  • 范数

    向量的范数 向量的1-范数 向量元素绝对值之和。 向量的2-范数 Euclid范数(欧几里得范数,常用计算向量长度...

  • Frobenius norm(Frobenius 范数)

    Frobenius 范数,简称F-范数,是一种矩阵范数,记为||·||F。矩阵A的Frobenius范数定义为矩阵...

  • 范数与距离度量(python实现)

    范数 norm则表示范数,函数参数如下: ①x: 表示矩阵(也可以是一维) ②ord:范数类型 向量的范数: ​ ...

  • 标准化与归一化 with Scikit-learn

    1. 范数公式 L0 范数:所有非零元素个数 L1 范数: L2 范数: Lp 范数: 2. 标准化(Standa...

  • 常见向量范数和矩阵范数

    1、向量范数1-范数: ,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,ma...

  • 向量的范数

    向量的范数是一个标量范数为: 特别地: 0范数为向量中非零元素的个数 1范数为向量元素的绝对值相加 2范数为向量元...

  • 范数

    范数,是用来衡量向量,矩阵的大小的。 下面介绍一下常用的范数: 向量的范数 L1范数: 其实就是向量每一维数的绝对...

  • 范数

    (5 条消息)0 范数、1 范数、2 范数有什么区别? - 知乎 https://www.zhihu.com/q...

  • 0范数、1范数、2范数

    函数与几何图形往往是有对应关系的,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几何图像是函...

网友评论

      本文标题:范数

      本文链接:https://www.haomeiwen.com/subject/uysrhxtx.html