Generate Parentheses
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]
利用递归,注意满足的两个条件:左括号一定要大于零,右括号一定要大于零,且大于左括号的数量
class Solution(object):
def generateParenthesis(self, n):
"""
:type n: int
:rtype: List[str]
"""
res=[]
tmp=['' for i in range(n+n)]
self.generate(res,n,n,tmp,0)
return res
def generate(self,res,l,r,tmp,index):
if l==0 and r==0:
res.append(''.join(tmp))
return
if l>0:
tmp[index]='('
self.generate(res,l-1,r,tmp,index+1)
if r>0 and r>l:
tmp[index]=')'
self.generate(res,l,r-1,tmp,index+1)
再来看一个backtrack的方案:
class Solution:
def generateParenthesis(self, n: int) -> List[str]:
if n == 0: return ['']
ans = []
def backtrack(S = '',left = 0, right = 0):
if len(S) == 2 * n:
ans.append(S)
return
if left < n:
backtrack(S+'(',left + 1, right)
if right < left:
backtrack(S+')',left,right + 1)
backtrack()
return ans
和一个dp的方案:
To generate all n-pair parentheses, we can do the following:
Generate one pair: ()
Generate 0 pair inside, n - 1 afterward: () (...)...
Generate 1 pair inside, n - 2 afterward: (()) (...)...
...
Generate n - 1 pair inside, 0 afterward: ((...))
I bet you see the overlapping subproblems here. Here is the code:
(you could see in the code that x represents one j-pair solution and y represents one (i - j - 1) pair solution, and we are taking into account all possible of combinations of them)
class Solution:
def generateParenthesis(self, n: int) -> List[str]:
dp = [[] for i in range(n + 1)]
dp[0].append('')
for i in range(n + 1):
for j in range(i):
dp[i] += ['(' + x + ')' + y for x in dp[j] for y in dp[i - j - 1]]
return dp[n]
看看caikehe的方案:
毫无疑问,这个非常好理解!
class Solution:
def generateParenthesis(self, n: int) -> List[str]:
res = []
self.dfs(n, n, "", res)
return res
def dfs(self, leftRemain, rightRemain, path, res):
if leftRemain > rightRemain or leftRemain < 0 or rightRemain < 0:
return # backtracking
if leftRemain == 0 and rightRemain == 0:
res.append(path)
return
self.dfs(leftRemain-1, rightRemain, path+"(", res)
self.dfs(leftRemain, rightRemain-1, path+")", res)
看看stefan大大的方案:
# Solution 1
#
# I used a few "tricks"... how many can you find? :-)
def generateParenthesis(self, n):
def generate(p, left, right, parens=[]):
if left: generate(p + '(', left-1, right)
if right > left: generate(p + ')', left, right-1)
if not right: parens += p,
return parens
return generate('', n, n)
# Solution 2
#
# Here I wrote an actual Python generator. I allow myself to put the yield q at the end of the line because it's not that bad and because in "real life" I use Python 3 where I just say yield from generate(...).
def generateParenthesis(self, n):
def generate(p, left, right):
if right >= left >= 0:
if not right:
yield p
for q in generate(p + '(', left-1, right): yield q
for q in generate(p + ')', left, right-1): yield q
return list(generate('', n, n))
# Solution 3
#
# Improved version of this. Parameter open tells the number of "already opened" parentheses, and I continue the recursion as long as I still have to open parentheses (n > 0) and I haven't made a mistake yet (open >= 0).
def generateParenthesis(self, n, open=0):
if n > 0 <= open:
return ['(' + p for p in self.generateParenthesis(n-1, open+1)] + \
[')' + p for p in self.generateParenthesis(n, open-1)]
return [')' * open] * (not n)
网友评论