Problem A. 欧几里德的游戏
时间限制 1000 ms
内存限制 128 MB
题目描述
欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的。给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0。然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利。下面是他们用(25,7)两个数游戏的过程:
Start:25 7
Stan:11 7
Ollie:4 7
Stan:4 3
Ollie:1 3
Stan:1 0
Stan赢得了游戏的胜利。
现在,假设他们完美地操作,谁会取得胜利呢?
输入数据
第一行为测试数据的组数 C 。下面有 C 行,每行为一组数据,包含两个正整数 M, N 。( M, N 不超过长整型。)
输出数据
对每组输入数据输出一行,如果Stan胜利,则输出“Stan wins”;否则输出“Ollie wins”
样例输入
2
25 7
24 15
样例输出
Stan wins
Ollie wins
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include <vector>
#include<iostream>
using namespace std;
int main(void) {
int num,count;
int k;
cin >> count;
vector<int> nArray, mArray;
for (int i = 0; i < count; i++) {
int n, m;
cin >> n >> m;
nArray.push_back(n);
mArray.push_back(m);
}
for (int i = 0; i < count; i++) {
int n, m;
m = mArray[i];
n = nArray[i];
num = 0;
k = 0;
while (n && m) {
if (n > m) {
k = n / m;
n %= m;
num++;
if (k > 1) break;
}
else {
k = m / n;
m %= n;
num++;
if (k > 1) break;
}
}
if (num % 2 == 1) {
cout << "Stan wins" << endl;
}
else {
cout << "Ollie wins" << endl;
}
}
return 0;
}
网友评论