美文网首页
LeetCode-六道股票问题

LeetCode-六道股票问题

作者: 傅晨明 | 来源:发表于2019-12-06 15:31 被阅读0次

    121. 买卖股票的最佳时机

    122. 买卖股票的最佳时机 II

    123. 买卖股票的最佳时机 III

    188. 买卖股票的最佳时机 IV

    309. 最佳买卖股票时机含冷冻期

    714. 买卖股票的最佳时机含手续费

    参考:
    https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock/solution/yi-ge-fang-fa-tuan-mie-6-dao-gu-piao-wen-ti-by-l-3/

    https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/discuss/39611/Is-it-Best-Solution-with-O(n)-O(1).

    https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/discuss/135704/Detail-explanation-of-DP-solution

    https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/discuss/39608/A-clean-DP-solution-which-generalizes-to-k-transactions


    以188. 买卖股票的最佳时机 IV 为例讲解,因为其他题可以通过这道题演化出来。

    dp[i][k][0 or 1] (0 <= i <= n-1, 1 <= k <= K)
    

    i 为天数
    k 为最多交易次数 [0,1] 为是否持有股票
    总状态数: n * K * 2 种状态

    for 0 <= i < n:
        for 1 <= k <= K:
            for s in {0, 1}:
                 dp[i][k][s] = max(buy, sell, rest)
    

    状态转移方程:

    dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]) 
                  max(       选择 rest ,        选择 sell )
    

    解释:今天我没有持有股票,有两种可能:

    • 我昨天就没有持有,然后今天选择 rest,所以我今天还是没有持有;
    • 我昨天持有股票,但是今天我 sell 了,所以我今天没有持有股票了。
    dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
                  max(    选择 rest ,     选择 buy )
    

    解释:今天我持有着股票,有两种可能:

    • 我昨天就持有着股票,然后今天选择 rest,所以我今天还持有着股票;
    • 我昨天本没有持有,但今天我选择 buy,所以今天我就持有股票了。

    初始状态:

        dp[-1][k][0] = dp[i][0][0] = 0
        dp[-1][k][1] = dp[i][0][1] = -infinity
    

    状态转移方程:

         dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
         dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
    

    121. 买卖股票的最佳时机

        public int maxProfit(int[] prices) {
            int n = prices.length;
            if (n == 0) {
                return 0;
            }
            int k = 1;
            int[][][] dp = new int[n][k + 1][2];
            dp[0][k][0] = 0;
            dp[0][k][1] = -prices[0];
            for (int i = 1; i < n; i++) {
                dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
                dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
            }
            return dp[n - 1][k][0];
        }
    

    对于k=1,dp[i-1][0][0] = 0(表示没有买过股票并且当前没有持有股票),可以化简去掉所有 k:

        public int maxProfit(int[] prices) {
            int n = prices.length;
            if (n == 0) {
                return 0;
            }
            int[][] dp = new int[n][2];
            dp[0][0] = 0;
            dp[0][1] = -prices[0];
            for (int i = 1; i < n; i++) {
                dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
                dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
            }
            return dp[n - 1][0];
        }
    

    状态转移方程的新状态只和相邻的一个状态有关,其实不用整个 dp 数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):

        public int maxProfit(int[] prices) {
            int n = prices.length;
            if (n == 0) {
                return 0;
            }
            int dp_i_0 = 0;
            int dp_i_1 = -prices[0];
            for (int i = 1; i < n; i++) {
                dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
                dp_i_1 = Math.max(dp_i_1, -prices[i]);
            }
            return dp_i_0;
        }
    

    122. 买卖股票的最佳时机 II

    k 为正无穷,那么就可以认为 k 和 k - 1 是一样的。可以这样改写框架:

    dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
    dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
                = max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])
    
    我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了:
    dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
    dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
    
    public int maxProfit(int[] prices) {
            int n = prices.length;
            if (n == 0) {
                return 0;
            }
            int[][] dp = new int[n][2];
            dp[0][0] = 0;
            dp[0][1] = -prices[0];
            for (int i = 1; i < n; i++) {
                dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
                dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            }
            return dp[n - 1][0];
        }
    

    使用变量存储:

     public int maxProfit(int[] prices) {
            int n = prices.length;
            if (n == 0) {
                return 0;
            }
            int dp_i_0 = 0;
            int dp_i_1 = -prices[0];
            for (int i = 1; i < n; i++) {
                dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
                dp_i_1 = Math.max(dp_i_1, dp_i_0 - prices[i]);
            }
            return dp_i_0;
        }
    

    123. 买卖股票的最佳时机 III

        public int maxProfit(int[] prices) {
            int n = prices.length;
            if (n == 0) {
                return 0;
            }
            int max_k = 2;
            int[][][] dp = new int[n][max_k + 1][2];
    
            for (int i = 1; i < n; i++) {
                for (int k = max_k; k >= 1; k--) {
                    dp[0][k][0] = 0;
                    dp[0][k][1] = -prices[0];
    
                    dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
                    dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
                }
            }
            return dp[n - 1][max_k][0];
        }
    
        public int maxProfit(int[] prices) {
            int n = prices.length;
            if (n == 0) {
                return 0;
            }
            int[][][] dp = new int[n][3][2];
            dp[0][2][0] = 0;
            dp[0][1][0] = 0;
            dp[0][1][1] = -prices[0];
            dp[0][2][1] = -prices[0];
    
            for (int i = 1; i < n; i++) {
                dp[i][2][0] = Math.max(dp[i - 1][2][0], dp[i - 1][2][1] + prices[i]);
                dp[i][2][1] = Math.max(dp[i - 1][2][1], dp[i - 1][1][0] - prices[i]);
                dp[i][1][0] = Math.max(dp[i - 1][1][0], dp[i - 1][1][1] + prices[i]);
                dp[i][1][1] = Math.max(dp[i - 1][1][1], -prices[i]);
            }
            return dp[n - 1][2][0];
        }
    
        public int maxProfit(int[] prices) {
            if (prices.length == 0) {
                return 0;
            }
            int dp_i10 = 0;
            int dp_i20 = 0;
    //      int dp_i11 = Integer.MIN_VALUE;
    //      int dp_i21 = Integer.MIN_VALUE;
            int dp_i11 = -prices[0];
            int dp_i21 = -prices[0];
            for (int price : prices) {
                dp_i20 = Math.max(dp_i20, dp_i21 + price);
                dp_i21 = Math.max(dp_i21, dp_i10 - price);
                dp_i10 = Math.max(dp_i10, dp_i11 + price);
                dp_i11 = Math.max(dp_i11, -price);
            }
            return dp_i20;
        }
    

    188. 买卖股票的最佳时机 IV

        public int maxProfit(int max_k, int[] prices) {
            int n = prices.length;
            if (n == 0) {
                return 0;
            }
            if (max_k > n / 2)// 超出内存限制
                return maxProfit_k_inf(prices);
    
            int[][][] dp = new int[n][max_k + 1][2];
            for (int i = 1; i < n; i++)
                for (int k = max_k; k >= 1; k--) {
                    dp[0][k][0] = 0;
                    dp[0][k][1] = -prices[0];
    
                    dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
                    dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
                }
            return dp[n - 1][max_k][0];
        }
    
        int maxProfit_k_inf(int[] prices) {
            int n = prices.length;
            int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
            for (int i = 0; i < n; i++) {
                int temp = dp_i_0;
                dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
                dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
            }
            return dp_i_0;
        }
    

    相关文章

      网友评论

          本文标题:LeetCode-六道股票问题

          本文链接:https://www.haomeiwen.com/subject/viesgctx.html