iteration(迭代)
迭代是Python最强大的功能之一,是访问集合元素的一种方式。
只要是可迭代对象(Iterable),就可以通过for循环来遍历,这种遍历我们称为迭代。
也就是说所有可作用于for循环的对象都是可迭代对象(Iterable)。
那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:
>>> from collections import Iterable
>>> isinstance(123,Iterable) # Integer 不可迭代
False
>>> isinstance('abc',Iterable) # String 可迭代
True
>>> isinstance([1,2,3],Iterable) # List 可迭代
True
>>> isinstance(('a','b','c'),Iterable) # Tuple 可迭代
True
>>> isinstance({'name':'Arno','Job':'Ops'},Iterable) # Dictionary 可迭代
True
dict 迭代说明
默认情况下,dict迭代的是key:
>>> d = {'Name':'Arno','Born':1993,'Job':'Ops'}
>>> for k in d:
... print(k)
...
Name
Born
Job
如果要迭代value,可以用for value in d.values():
for v in d.values():
... print(v)
...
Arno
1993
Ops
如果要同时迭代key和value,可以用for k, v in d.items():
>>> for k,v in d.items():
... print('key:', k, '\t', 'value:', v)
...
key: Name value: Arno
key: Born value: 1993
key: Job value: Ops
知识扩展
在Python中,List元素是有索引的,那么如何实现类似Java那样的下标循环?
方法一,通过len()方法取得列表长度,再结合range()方法实现索引下标循环:
>>> L = ['a','b','c']
>>> for i in range(len(L)):
... print(i, L[i])
...
0 a
1 b
2 c
方法二,Python内置的enumerate函数可以把一个list变成 索引-元素 对,这样就可以在for循环中同时迭代索引和元素本身:
for i,v in enumerate(L):
... print(i, v)
...
0 a
1 b
2 c
iterator(迭代器)
迭代器是一个可以记住遍历的位置的对象。
迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束;
迭代器只能往前不会后退;
迭代器有两个基本的方法:
iter()
next()
可以通过 collections 模块的 Iterator 类型判断一个对象是否是迭代器:
from collections import Iterator
isinstance([1,2,3], Iterator)
False
isinstance({'Name':'Arno','Born':1993,'Job':'Ops'}, Iterator)
False
isinstance('abc', Iterator)
False
isinstance(iter([1,2,3]), Iterator) # iter()创建迭代器对象
True
isinstance((x for x in range(10)), Iterator) # 生成器
True
可以看出,生成器(generator)都是迭代器(Iterator)对象,但String、List、Tuple、Dict虽然是可迭代对象(Iterable),却不是迭代器(Iterator)。
当然,String、List、Tuple、Dict等可迭代对象都可用于创建迭代器:
L = [1,2,3]
it = iter(L)
print(next(it))
1
print(next(it))
2
print(next(it))
3
print(next(it)) # 没有值可返回时,抛异常 StopIteration
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
迭代器对象常使用for语句进行遍历:
L = [1,2,3]
it = iter(L)
for x in it:
... print(x, end=" ")
...
1 2 3
也可以使用 next() 函数:
import sys
L = [1,2,3]
it = iter(L)
while True:
... try:
... print(next(it))
... except StopIteration:for i in range(len(L)):
... print(i, L[i])
...
0 a
1 b
2 c
```
方法二,Python内置的enumerate函数可以把一个list变成 索引-元素 对,这样就可以在for循环中同时迭代索引和元素本身:
>>> for i,v in enumerate(L):
... print(i, v)
...
0 a
1 b
2 c
iterator(迭代器)
迭代器是一个可以记住遍历的位置的对象。
迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束;
迭代器只能往前不会后退;
迭代器有两个基本的方法:
iter()
next()
可以通过 collections 模块的 Iterator 类型判断一个对象是否是迭代器:
>>> from collections import Iterator
>>> isinstance([1,2,3], Iterator)
False
>>> isinstance({'Name':'Arno','Born':1993,'Job':'Ops'}, Iterator)
False
>>> isinstance('abc', Iterator)
False
>>> isinstance(iter([1,2,3]), Iterator) # iter()创建迭代器对象
True
>>> isinstance((x for x in range(10)), Iterator) # 生成器
True
可以看出,生成器(generator)都是迭代器(Iterator)对象,但String、List、Tuple、Dict虽然是可迭代对象(Iterable),却不是迭代器(Iterator)。
当然,String、List、Tuple、Dict等可迭代对象都可用于创建迭代器:
>>> L = [1,2,3]
>>> it = iter(L)
>>> print(next(it))
1
>>> print(next(it))
2
>>> print(next(it))
3
>>> print(next(it)) # 没有值可返回时,抛异常 StopIteration
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>>
迭代器对象常使用for语句进行遍历:
>>> L = [1,2,3]
>>> it = iter(L)
>>> for x in it:
... print(x, end=" ")
...
1 2 3
也可以使用 next() 函数:
>>> import sys
>>> L = [1,2,3]
>>> it = iter(L)
>>> while True:
... try:
... print(next(it))
... except StopIteration:
... sys.exit()
...
1
2
3
generator(生成器)
创建生成器的方法:
使用了 yield 语句的函数
Generator 是一个用于创建迭代器的简单而强大的工具。 它们的写法类似标准的函数,但当它们要返回数据时会使用 yield 语句。 每次对生成器调用 next() 时,它会从上次离开位置恢复执行(它会记住上次执行语句时的所有数据值)。
使用生成器表达式,就是把一个 列表生成式 的[]改成()
某些简单的生成器可以写成简洁的表达式代码,所用语法类似列表推导式,将外层为圆括号而非方括号。 这种表达式被设计用于生成器将立即被外层函数所使用的情况。 生成器表达式相比完整的生成器更紧凑但较不灵活,相比等效的列表推导式则更为节省内存。
yield 函数生成器
在 Python 中,使用了 yield 的函数被称为生成器
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回yield的值。并在下一次执行 next()方法时从当前位置继续运行。
实例,使用 yield 实现斐波那契数列:
import sys
def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()
列表生成式
列表生成式(List Comprehensions)也叫列表推导式,提供了一个更简单的创建列表的方法。
常见的用法:
是把某种操作应用于序列或可迭代对象的每个元素上,然后使用其结果来创建列表;
或者通过满足某些特定条件元素来创建子序列;
例如,创建一个平方列表,像这样
squares = []
for x in range(10):
... squares.append(x2)
L = [1,2,3]
>>> it = iter(L)
>>> for x in it:
... print(x, end=" ")
...
1 2 3
也可以使用 next() 函数:
>>> import sys
>>> L = [1,2,3]
>>> it = iter(L)
>>> while True:
... try:
... print(next(it))
... except StopIteration:
... sys.exit()
...
1
2
3
generator(生成器)
创建生成器的方法:
使用了 yield 语句的函数
Generator 是一个用于创建迭代器的简单而强大的工具。 它们的写法类似标准的函数,但当它们要返回数据时会使用 yield 语句。 每次对生成器调用 next() 时,它会从上次离开位置恢复执行(它会记住上次执行语句时的所有数据值)。
使用生成器表达式,就是把一个 列表生成式 的[]改成()
某些简单的生成器可以写成简洁的表达式代码,所用语法类似列表推导式,将外层为圆括号而非方括号。 这种表达式被设计用于生成器将立即被外层函数所使用的情况。 生成器表达式相比完整的生成器更紧凑但较不灵活,相比等效的列表推导式则更为节省内存。
yield 函数生成器
在 Python 中,使用了 yield 的函数被称为生成器
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回yield的值。并在下一次执行 next()方法时从当前位置继续运行。
实例,使用 yield 实现斐波那契数列:
import sys
def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()
列表生成式
列表生成式(List Comprehensions)也叫列表推导式,提供了一个更简单的创建列表的方法。
常见的用法:
是把某种操作应用于序列或可迭代对象的每个元素上,然后使用其结果来创建列表;
或者通过满足某些特定条件元素来创建子序列;
例如,创建一个平方列表,像这样
>>> squares = []
>>> for x in range(10):
... squares.append(x2)
...
squares
it = iter(L)
>>> for x in it:
... print(x, end=" ")
...
1 2 3
也可以使用 next() 函数:
>>> import sys
>>> L = [1,2,3]
>>> it = iter(L)
>>> while True:
... try:
... print(next(it))
... except StopIteration:
... sys.exit()
...
1
2
3
generator(生成器)
创建生成器的方法:
使用了 yield 语句的函数
Generator 是一个用于创建迭代器的简单而强大的工具。 它们的写法类似标准的函数,但当它们要返回数据时会使用 yield 语句。 每次对生成器调用 next() 时,它会从上次离开位置恢复执行(它会记住上次执行语句时的所有数据值)。
使用生成器表达式,就是把一个 列表生成式 的[]改成()
某些简单的生成器可以写成简洁的表达式代码,所用语法类似列表推导式,将外层为圆括号而非方括号。 这种表达式被设计用于生成器将立即被外层函数所使用的情况。 生成器表达式相比完整的生成器更紧凑但较不灵活,相比等效的列表推导式则更为节省内存。
yield 函数生成器
在 Python 中,使用了 yield 的函数被称为生成器
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回yield的值。并在下一次执行 next()方法时从当前位置继续运行。
实例,使用 yield 实现斐波那契数列:
import sys
def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()
列表生成式
列表生成式(List Comprehensions)也叫列表推导式,提供了一个更简单的创建列表的方法。
常见的用法:
是把某种操作应用于序列或可迭代对象的每个元素上,然后使用其结果来创建列表;
或者通过满足某些特定条件元素来创建子序列;
例如,创建一个平方列表,像这样
>>> squares = []
>>> for x in range(10):
... squares.append(x**2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
可以改为
list(map(lambda x: x2, range(10)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
it = iter(L)
>>> while True:
... try:
... print(next(it))
... except StopIteration:
... sys.exit()
...
1
2
3
generator(生成器)
创建生成器的方法:
使用了 yield 语句的函数
Generator 是一个用于创建迭代器的简单而强大的工具。 它们的写法类似标准的函数,但当它们要返回数据时会使用 yield 语句。 每次对生成器调用 next() 时,它会从上次离开位置恢复执行(它会记住上次执行语句时的所有数据值)。
使用生成器表达式,就是把一个 列表生成式 的[]改成()
某些简单的生成器可以写成简洁的表达式代码,所用语法类似列表推导式,将外层为圆括号而非方括号。 这种表达式被设计用于生成器将立即被外层函数所使用的情况。 生成器表达式相比完整的生成器更紧凑但较不灵活,相比等效的列表推导式则更为节省内存。
yield 函数生成器
在 Python 中,使用了 yield 的函数被称为生成器
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回yield的值。并在下一次执行 next()方法时从当前位置继续运行。
实例,使用 yield 实现斐波那契数列:
import sys
def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()
列表生成式
列表生成式(List Comprehensions)也叫列表推导式,提供了一个更简单的创建列表的方法。
常见的用法:
是把某种操作应用于序列或可迭代对象的每个元素上,然后使用其结果来创建列表;
或者通过满足某些特定条件元素来创建子序列;
例如,创建一个平方列表,像这样
>>> squares = []
>>> for x in range(10):
... squares.append(x2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
可以改为
>>> list(map(lambda x: x**2, range(10)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
等价于
列表推导式,更加简洁易读
[x**2 for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
增加特定条件
[x**2 for x in range(10) if x % 2 != 0]
[1, 9, 25, 49, 81]
创建为生成器
(x**2 for x in range(10) if x % 2 != 0)
<generator object <genexpr> at 0x7f076f06e990>
知识扩展
lambda 表达式
lambda 表达式(有时称为 lambda 构型)被用于创建匿名函数。
表达式 lambda parameters: expression 会产生一个函数对象 。 该未命名对象的行为类似于用以下方式定义的函数:
def <lambda>(parameters):
return expression
注意:通过 lambda 表达式创建的函数不能包含语句或标注。
map() 高阶函数
接收两个参数,一个是函数,一个是可迭代对象(Iterable),map将传入的函数依次作用到序列的每个元素,并把结果作为新的iterator(迭代器)返回。
总结
迭代(iteration)是访问集合元素的一种方式;
迭代器(iterator)对象一定是可迭代对象,反之则不一定;
可迭代对象(Iterable)不一定是迭代器;
例如list、dict、str等集合数据类型是可迭代对象,但不是迭代器,但是它们可以通过iter()函数生成一个迭代器对象。
生成器(generator)对象既是可迭代对象也是迭代器;
遍历方式
迭代器、生成器和可迭代对象都可以用for循环去迭代
生成器和迭代器还可以被next()方函数调用并返回下一个值
网友评论