美文网首页统计学
假设检验概述

假设检验概述

作者: 北京挖掘机 | 来源:发表于2018-07-13 13:10 被阅读58次

讲到统计学,终究会谈到假设检验的问题,做过数据分析的人也都是耳熟能详, 但如果让你具体讲讲假设检验的原理, 什么是P值,为什么用t检验,为什么用F检验,估计能问倒一操场。

image

作为本公众号的开篇处女作,从假设检验入手,讲一下假设检验的基本原理与过程。

首先明确下假设检验在统计学里的位置:统计推断是统计学的重要分支,做统计推断有两个重要方法,即参数估计与假设检验。参数估计是用样本统计量估计总体参数,而假设检验,则顾名思义,先假设,后检验,例如假设均值为μ,然后根据样本信息检验均值是不是μ,实际上是要证明均值不是μ,即推翻原假设。逻辑上采用的是反证法,根据统计上的小概率原理。

举例来说,魔都官方数据说居民人均工资1w,对于我这种北漂来说就打了个大问号,然后就局部范围内做了个统计(假如样本有代表性),统计均值为7k, 那我这个结果有没有信服力,那我们可以检验一下,设置95%的置信水平,算出P值为0.0002,那我可以很自信的说官方数据在开火车,不值得信。因为P值为0.0002意味着,如果居民人均工资为1w, 那么我统计出均值为7k的概率为0.0002,这么小的概率竟然这么容易就让我碰上了,显然真实的人均工资不可能为1w啊, 这就是根据小概率原理来推翻原假设。

接下来我们讲一下假设检验的套路,讲述过程中你也许会有疑问,为什么这样,不要担心,先往下看,我会陆续对假设检验的细节作出补充,如果未涉及到可以在评论中提出,我会补充上):

image.png

套路1,提出假设,也就是我猜结果会是什么。猜完之后进入套路2,即我要拿什么去验证假设,这里我们叫做检验统计量。检验没有绝对的对错,所以我们要设定一个显著性水平,就是套路3,相当于设定一个门槛,在门外面就拒绝进门,统计学上叫拒绝域,拒绝的是原假设。套路第四步就是将门在哪儿计算出来,依据的是前两步确定的检验统计量以及显著性水平。最后就可以做出决策啦,看一下到底在门里面还是门外面。

接下来将提到的套路跟大家套路一下:

假设的提出包括原假设与备择假设。原假设(H0)则是我们收集证据想要推翻的假设, 而备择假设(H1)则是要去支持的,所以大家可以根据实际情况来设定原假设与备择假设。原假设与备择假设互斥。假设检验是围绕着对原假设是否成立展开的。假设检验还会涉及到两类错误的问题,这个内容较多,会单独讲解。

检验统计量是用于假设检验决策的统计量。如何去选择统计量呢?这与参数估计相同,需要考虑样本总体个数,样本大小,通常大于30个样品我们认为是大样本,以及总体方差是否已知,如果未知,可以用样品方差近似计算。是不是感觉有些头晕,撑住,这是做假设检验的关键,告诉你什么情况下采用什么样的检验方法,记住这儿,以后就不会没心没肺的只会t检验啦。贴心的我给大家整理了检验统计量的选择图谱,对家直接对号入座就可以啦,记住这些,再遇到假设检验的问题,你会感觉厉(niu)害(bi)的不要不要的。

image

配对样本的检验:两个总体参数的假设检验过程中,我们假定样本是独立的,但有种情况下样本间可能存在相依的关系,这种情况下两个正态总体的问题可以按照一个样品总体进行分析。举个例子:我想测试某个洗涤产品的洗涤效果,我可以测一下衣服洗之前的洁净程度,用产品洗之后的洁净程度,这样就得到了两个总体,可以按照方差未知的小样本t检验进行分析。但是,同是一件衣服,洗之前和洗之后数据之间是有对应关系的,我可以将洗前洗后的洁净程度做差值,检验差值是否为0,这样就转化为一个总体样本的t检验。

具体的统计量的计算公式此处未给出,主要考虑到现在都用统计软件进行计算,关键要明确自己的统计问题,选择恰当的检验统计量,然后在统计软件上就可以开挂了!

image

显著性α:这是犯一类错误的概率,即原假设为真时,拒绝原假设的概率。比如警察抓小偷时,明明是小偷,却判断失误当好人给放了的概率。也被称为抽样分布的拒绝域,这个可以由研究者事先确定。

计算检验统计量的值。当确定了检验统计量以及显著性α的值,通常为0.01, 0.05,0.001,就可以通过统计软件或查表得到统计量的临界值zaza/2tata/2

作出统计决策。统计决策的确定有两种方式,一种是将检验统计量的绝对值与α水平的临界值进行比较,高于临界值则拒绝原假设,低于临界值则不能拒绝。另外一种方式是采用P值进行决策。个人比较倾向第二种,当然现在的统计学软件会将这些值一并给出。我们通常将P值称为观测到的显著性水平,即当原假设为真时得到样本观察结果或者更极端结果的概率,如果P值很小,说明得到观测结果的概率很小,如果出现了,根据小概率原理,我就有理由拒绝原假设了。如果事先确定了显著性水平,比如α= 0.05,在双侧检验中可以比较P值与0.025的大小决定是否拒绝原假设,单侧检验中可以比较P值与0.05的大小进行决策。当然也可以直接使用P值,按照我们所需要的显著性水平进行决策。

image.png
image.png

以上就是假设检验的基本原理及流程。懂了这些就几乎可以秒杀一切你所遇到的假设检验问题。还有同学经常问为何把小概率标准定为0.05, 哈哈,不要问我,因为我不知道。著名英国统计学家Fisher就这样用的,无解。

image

最后给大家举个例子,一起感受一下🐂逼的人生:

“多吃谷物,将有助于减肥。”为了验证这个假设,随机抽取了35人,询问他们早餐和午餐的通常食谱,根据他们的食谱,将其分为二类,一类为经常的谷类食用者(总体1),一类为非经常谷类食用者(总体2)。然后测度每人午餐的大卡摄取量。经过一段时间的实验,得到如下结果:检验该假设(a = 0.05)

1. 原假设:u1-u2>=0

备择假设:u1-u2<0
  1. 该情况为两个总体的t检验, 计算得t=2.4869。注意此处为单侧检验。
image

3. 在0.05显著性水平上拒绝原假设。

4. 结论,没有证据证明多次谷物有助于减肥。

   (题目来源于贾俊平老师统计学课件)

相关文章

  • 假设检验概述

    讲到统计学,终究会谈到假设检验的问题,做过数据分析的人也都是耳熟能详, 但如果让你具体讲讲假设检验的原理, 什么是...

  • 统计学笔记6 假设检验和p值

    假设检验 假设检验(hypothesis testing),又称统计假设检验,是用来判断样本与样本、样本与总体的差...

  • 统计学基础11- 基于正态总体的假设检验

    一. 假设检验概述 1.1 假设 现有如下假设:客户的地域信息会影响逾期率 如何证明上述论断是否正确? 统计学推断...

  • Python做假设检验

    目前看到的最全的假设检验的文章 python假设检验

  • R语言学习笔记_04

    假设检验 在R的内置函数中几乎囊括了所有常用的假设检验,常用的假设检验包括: 相关性分析包括Pearson相关系数...

  • 如何做推论统计分析报告?

    看本文内容前,确保你已经学过之前文章中的“假设检验”: 如何用最通俗易懂的方式理解假设检验 前面我们通过《假设检验...

  • 学习汇总

    python python假设检验(很全):python假设检验统计功能包:scipy 统计模型包:statsmo...

  • 生信课程笔记11-关于p值

    统计假设检验 Statistical hypothesis testing 假设检验是使用来自总体的采样(samp...

  • 【简单生活简单记】1.24小记

    ✨学习假设检验的一天。 假设检验: 假设检验基本思想、左右侧检验与双侧检验、Z检验基本原理、Z检验实例、T检验基本...

  • 《商务与经济统计》第12版学习9

    第9章 假设检验 在统计推断中如何利用假设检验来确定是否应该拒绝关于总体参数值的说法。 在假设检验中,我们首先对总...

网友评论

    本文标题:假设检验概述

    本文链接:https://www.haomeiwen.com/subject/vjpjpftx.html