jtsAng

作者: hehehehe | 来源:发表于2023-12-15 17:01 被阅读0次
    image.png image.png
    /*
     * Copyright (c) 2016 Vivid Solutions.
     *
     * All rights reserved. This program and the accompanying materials
     * are made available under the terms of the Eclipse Public License 2.0
     * and Eclipse Distribution License v. 1.0 which accompanies this distribution.
     * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v20.html
     * and the Eclipse Distribution License is available at
     *
     * http://www.eclipse.org/org/documents/edl-v10.php.
     */
    package org.locationtech.jts.algorithm;
    
    import org.locationtech.jts.geom.Coordinate;
    
    /**
     * Utility functions for working with angles.
     * Unless otherwise noted, methods in this class express angles in radians.
     */
    @SuppressWarnings("DuplicatedCode") public class Angle
    {
      /**
       * The value of 2*Pi
       */
      public static final double PI_TIMES_2 = 2.0 * Math.PI;
      /**
       * The value of Pi/2
       */
      public static final double PI_OVER_2 = Math.PI / 2.0;
      /**
       * The value of Pi/4
       */
      public static final double PI_OVER_4 = Math.PI / 4.0;
    
      /** Constant representing counterclockwise orientation */
      public static final int COUNTERCLOCKWISE = Orientation.COUNTERCLOCKWISE;
    
      /** Constant representing clockwise orientation */
      public static final int CLOCKWISE = Orientation.CLOCKWISE;
    
      /** Constant representing no orientation */
      public static final int NONE = Orientation.COLLINEAR;
    
      private Angle() {}
    
      /**
       * Converts from radians to degrees.
       * @param radians an angle in radians
       * @return the angle in degrees
       */
      public static double toDegrees(double radians) {
          return (radians * 180) / (Math.PI);
      }
    
      /**
       * Converts from degrees to radians.
       *
       * @param angleDegrees an angle in degrees
       * @return the angle in radians
       */
      public static double toRadians(double angleDegrees) {
          return (angleDegrees * Math.PI) / 180.0;
      }
    
    
      /**
       * Returns the angle of the vector from p0 to p1,
       * relative to the positive X-axis.
       * The angle is normalized to be in the range [ -Pi, Pi ].
       *
       * @param p0 the initial point of the vector
       * @param p1 the terminal point of the vector
       * @return the normalized angle (in radians) that p0-p1 makes with the positive x-axis.
       */
      public static double angle(Coordinate p0, Coordinate p1) {
          double dx = p1.x - p0.x;
          double dy = p1.y - p0.y;
          return Math.atan2(dy, dx);
      }
    
      /**
       * Returns the angle of the vector from (0,0) to p,
       * relative to the positive X-axis.
       * The angle is normalized to be in the range ( -Pi, Pi ].
       *
       * @param p the terminal point of the vector
       * @return the normalized angle (in radians) that p makes with the positive x-axis.
       */
      public static double angle(Coordinate p) {
          return Math.atan2(p.y, p.x);
      }
    
    
      /**
       * Tests whether the angle between p0-p1-p2 is acute.
       * An angle is acute if it is less than 90 degrees.
       * <p>
       * Note: this implementation is not precise (deterministic) for angles very close to 90 degrees.
       *
       * @param p0 an endpoint of the angle
       * @param p1 the base of the angle
       * @param p2 the other endpoint of the angle
       * @return true if the angle is acute
       */
      public static boolean isAcute(Coordinate p0, Coordinate p1, Coordinate p2)
      {
        // relies on fact that A dot B is positive if A ang B is acute
        double dx0 = p0.x - p1.x;
        double dy0 = p0.y - p1.y;
        double dx1 = p2.x - p1.x;
        double dy1 = p2.y - p1.y;
        double dotprod = dx0 * dx1 + dy0 * dy1;
        return dotprod > 0;
      }
    
      /**
       * Tests whether the angle between p0-p1-p2 is obtuse.
       * An angle is obtuse if it is greater than 90 degrees.
       * <p>
       * Note: this implementation is not precise (deterministic) for angles very close to 90 degrees.
       *
       * @param p0 an endpoint of the angle
       * @param p1 the base of the angle
       * @param p2 the other endpoint of the angle
       * @return true if the angle is obtuse
       */
      public static boolean isObtuse(Coordinate p0, Coordinate p1, Coordinate p2)
      {
        // relies on fact that A dot B is negative if A ang B is obtuse
        double dx0 = p0.x - p1.x;
        double dy0 = p0.y - p1.y;
        double dx1 = p2.x - p1.x;
        double dy1 = p2.y - p1.y;
        double dotprod = dx0 * dx1 + dy0 * dy1;
        return dotprod < 0;
      }
    
      /**
       * Returns the unoriented smallest angle between two vectors.
       * The computed angle will be in the range [0, Pi).
       *
       * @param tip1 the tip of one vector
       * @param tail the tail of each vector
       * @param tip2 the tip of the other vector
       * @return the angle between tail-tip1 and tail-tip2
       */
      public static double angleBetween(Coordinate tip1, Coordinate tail,
                Coordinate tip2) {
            double a1 = angle(tail, tip1);
            double a2 = angle(tail, tip2);
    
            return diff(a1, a2);
      }
    
      /**
       * Returns the oriented smallest angle between two vectors.
       * The computed angle will be in the range (-Pi, Pi].
       * A positive result corresponds to a counterclockwise
       * (CCW) rotation
       * from v1 to v2;
       * a negative result corresponds to a clockwise (CW) rotation;
       * a zero result corresponds to no rotation.
       *
       * @param tip1 the tip of v1
       * @param tail the tail of each vector
       * @param tip2 the tip of v2
       * @return the angle between v1 and v2, relative to v1
       */
      public static double angleBetweenOriented(Coordinate tip1, Coordinate tail,
                Coordinate tip2) 
      {
            double a1 = angle(tail, tip1);
            double a2 = angle(tail, tip2);
            double angDel = a2 - a1;
            
            // normalize, maintaining orientation
            if (angDel <= -Math.PI)
                return angDel + PI_TIMES_2;
            if (angDel > Math.PI)
                return angDel - PI_TIMES_2;
            return angDel;
      }
      
      /**
       * Computes the angle of the unoriented bisector 
       * of the smallest angle between two vectors.
       * The computed angle will be in the range (-Pi, Pi].
       * 
       * @param tip1 the tip of v1
       * @param tail the tail of each vector
       * @param tip2 the tip of v2
       * @return the angle of the bisector between v1 and v2
       */
      public static double bisector(Coordinate tip1, Coordinate tail,
          Coordinate tip2)
      {
        double angDel = angleBetweenOriented(tip1, tail, tip2);
        double angBi = angle(tail, tip1) + angDel / 2;
        return normalize(angBi);
      }
    
      /**
         * Computes the interior angle between two segments of a ring. The ring is
         * assumed to be oriented in a clockwise direction. The computed angle will be
         * in the range [0, 2Pi]
         * 
         * @param p0
         *          a point of the ring
         * @param p1
         *          the next point of the ring
         * @param p2
         *          the next point of the ring
         * @return the interior angle based at {@code p1}
         */
      public static double interiorAngle(Coordinate p0, Coordinate p1, Coordinate p2)
      {
        double anglePrev = Angle.angle(p1, p0);
        double angleNext = Angle.angle(p1, p2);
        return normalizePositive(angleNext - anglePrev);
      }
    
      /**
       * Returns whether an angle must turn clockwise or counterclockwise
       * to overlap another angle.
       *
       * @param ang1 an angle (in radians)
       * @param ang2 an angle (in radians)
       * @return whether a1 must turn CLOCKWISE, COUNTERCLOCKWISE or NONE to
       * overlap a2.
       */
      public static int getTurn(double ang1, double ang2) {
          double crossproduct = Math.sin(ang2 - ang1);
    
          if (crossproduct > 0) {
              return COUNTERCLOCKWISE;
          }
          if (crossproduct < 0) {
              return CLOCKWISE;
          }
          return NONE;
      }
    
      /**
       * Computes the normalized value of an angle, which is the
       * equivalent angle in the range ( -Pi, Pi ].
       *
       * @param angle the angle to normalize
       * @return an equivalent angle in the range (-Pi, Pi]
       */
      public static double normalize(double angle)
      {
        while (angle > Math.PI)
          angle -= PI_TIMES_2;
        while (angle <= -Math.PI)
          angle += PI_TIMES_2;
        return angle;
      }
    
      /**
       * Computes the normalized positive value of an angle, which is the
       * equivalent angle in the range [ 0, 2*Pi ).
       * E.g.:
       * <ul>
       * <li>normalizePositive(0.0) = 0.0
       * <li>normalizePositive(-PI) = PI
       * <li>normalizePositive(-2PI) = 0.0
       * <li>normalizePositive(-3PI) = PI
       * <li>normalizePositive(-4PI) = 0
       * <li>normalizePositive(PI) = PI
       * <li>normalizePositive(2PI) = 0.0
       * <li>normalizePositive(3PI) = PI
       * <li>normalizePositive(4PI) = 0.0
       * </ul>
       *
       * @param angle the angle to normalize, in radians
       * @return an equivalent positive angle
       */
      public static double normalizePositive(double angle)
      {
        if (angle < 0.0) {
            while (angle < 0.0)
                angle += PI_TIMES_2;
            // in case round-off error bumps the value over 
            if (angle >= PI_TIMES_2)
                angle = 0.0;
        }
        else {
            while (angle >= PI_TIMES_2)
                angle -= PI_TIMES_2;
            // in case round-off error bumps the value under 
            if (angle < 0.0)
                angle = 0.0;
        }
        return angle;
      }
    
      /**
       * Computes the unoriented smallest difference between two angles.
       * The angles are assumed to be normalized to the range [-Pi, Pi].
       * The result will be in the range [0, Pi].
       *
       * @param ang1 the angle of one vector (in [-Pi, Pi] )
       * @param ang2 the angle of the other vector (in range [-Pi, Pi] )
       * @return the angle (in radians) between the two vectors (in range [0, Pi] )
       */
      public static double diff(double ang1, double ang2) {
        double delAngle;
    
        if (ang1 < ang2) {
          delAngle = ang2 - ang1;
        } else {
          delAngle = ang1 - ang2;
        }
    
        if (delAngle > Math.PI) {
          delAngle = (2 * Math.PI) - delAngle;
        }
    
        return delAngle;
      }
      
      /**
       * Projects a point by a given angle and distance.
       * 
       * @param p the point to project
       * @param angle the angle at which to project
       * @param dist the distance to project
       * @return the projected point
       */
      public static Coordinate project(Coordinate p, double angle, double dist) {
        double x = p.getX() + dist * Math.cos(angle);
        double y = p.getY() + dist * Math.sin(angle);
        return new Coordinate(x, y);
      }
    }
    
    

    相关文章

      网友评论

          本文标题:jtsAng

          本文链接:https://www.haomeiwen.com/subject/vklggdtx.html