一.先来简单的说一下数组的运算。
(1)数组的运算,就会对数组中的每一个元素进行计算,然后返回运算过后的数组的值组成的一个新的数组。
x = np.arange(4)
print("x =", x)
print("x + 5 =", x + 5)
print("x - 5 =", x - 5)
print("x * 2 =", x * 2)
print("x / 2 =", x / 2)
print("x // 2 =", x // 2) # 地板除
print('输出原来的数组检查:',x)
结果是:
x = [0 1 2 3]
x + 5 = [5 6 7 8]
x - 5 = [-5 -4 -3 -2]
x * 2 = [0 2 4 6]
x / 2 = [0. 0.5 1. 1.5]
x // 2 = [0 0 1 1]
[0 1 2 3]
(2)还有对于数组进行取反,求幂,还有对于数组进行求余的操作(有的地方叫取模!)。
print("-x = ", -x) #取反
print("x ** 2 = ", x ** 2) #进行求幂运算
print("x % 2 = ", x % 2) #进行求余数
结果:
-x = [ 0 -1 -2 -3]
x ** 2 = [0 1 4 9]
x % 2 = [0 1 0 1]
(3)另外,还支持一些其他的混合运算符操作。
a = -(0.5*x + 1) ** 2
print(a)
结果:
array([-1. , -2.25, -4. , -6.25])
二.我们除去用数学符号外,numpy也给我们封装了一些函数的方法来实现这些功能。
运算符 | numpy中的方法 | 描述 |
---|---|---|
+ | np.add() | Addition (e.g., 1 + 1 = 2) |
- | np.subtract() | Subtraction (e.g., 3 - 2 = 1) |
- | np.negative() | Unary negation (e.g., -2) |
* | np.multiply() | Multiplication (e.g., 2 * 3 = 6) |
/ | np.divide() | Division (e.g., 3 / 2 = 1.5) |
// | np.floor_divide | Floor division (e.g., 3 // 2 = 1) |
** | np.power | Exponentiation (e.g., 2 ** 3 = 8) |
% | np.mod | Modulus/remainder (e.g., 9 % 4 = 1) |
创建一个数组:
b = [-4, -2, 0, 2, 4]
a = np.array(b)
>>>a
array([-4, -2, 0, 2, 4])
示例:
print(np.add(a,2))
print(np.subtract(a,4))
print(np.negative(a))
print(np.multiply(a,3))
print(np.divide(a,3))
print(np.floor_divide(a,2))
print(np.power(a,4))
print(np.mod(a,3))
>>> 结果:
[-2 0 2 4 6]
[-8 -6 -4 -2 0]
[ 4 2 0 -2 -4]
[-12 -6 0 6 12]
[-1.33333333 -0.66666667 0. 0.66666667 1.33333333]
[-2 -1 0 1 2]
[256 16 0 16 256]
[2 1 0 2 1]
三.三角函数。
生成0-pi之间的均分4个数。
c = np.linspace(0,np.pi,4)
分别进行求三角函数的值:
print("theta = ", c)
print("sin(theta) = ", np.sin(c))
print("cos(theta) = ", np.cos(c))
print("tan(theta) = ", np.tan(c))
>>> 结果:
c = [0. 1.04719755 2.0943951 3.14159265]
sin(c) = [0.00000000e+00 8.66025404e-01 8.66025404e-01 1.22464680e-16]
cos(c) = [ 1. 0.5 -0.5 -1. ]
tan(c) = [ 0.00000000e+00 1.73205081e+00 -1.73205081e+00 -1.22464680e-16]
然后再看看反三角函数:
x = [-1, 0, 1]
print("x = ", x)
print("arcsin(x) = ", np.arcsin(x))
print("arccos(x) = ", np.arccos(x))
print("arctan(x) = ", np.arctan(x))
>>>结果:
x = [-1, 0, 1]
arcsin(x) = [-1.57079633 0. 1.57079633]
arccos(x) = [ 3.14159265 1.57079633 0. ]
arctan(x) = [-0.78539816 0. 0.78539816]
四.指数和对数。
指数:
x = [1, 2, 3]
print("x =", x)
print("e^x =", np.exp(x))
print("2^x =", np.exp2(x))
print("3^x =", np.power(3, x))
>>> 结果:
x = [1, 2, 3]
e^x = [ 2.71828183 7.3890561 20.08553692]
2^x = [ 2. 4. 8.]
3^x = [ 3 9 27]
对数:
x = [1, 2, 4, 10]
print("x =", x)
print("ln(x) =", np.log(x))
print("log2(x) =", np.log2(x))
print("log10(x) =", np.log10(x))
>>>结果:
x = [1, 2, 4, 10]
ln(x) = [ 0. 0.69314718 1.38629436 2.30258509]
log2(x) = [ 0. 1. 2. 3.32192809]
log10(x) = [ 0. 0.30103 0.60205999 1. ]
网友评论