从一条曲线谈损失函数优化方法

作者: breezedancer | 来源:发表于2018-04-27 17:37 被阅读177次

损失函数也叫目标函数,他是衡量预测值和实际值的相似程度的指标。我们希望预测值和真实值尽量接近,就需要估计一系列参数来拟合,这个参数集使得误差越小就说明这个算法还不错。一个损失函数有可能存在多个局部最小点,我们就需要至少找到在局部地区的最小值。

找到生成最小值的一组参数的算法被称为优化算法。我们发现随着算法复杂度的增加,则算法倾向于更高效地逼近最小值。我们将在这篇文章中讨论以下算法:

  • 随机梯度下降法(批次、随机、mini-batch)
  • 动量算法(物理里面的动量含义)
  • RMSProp
  • Adam 算法

随机梯度下降法

随便找一本书介绍 SGD,都会出现这个公式


image

θ是你试图找到最小化 J 的参数,这里的 J 称为目标函数,α叫做学习率。目标函数的来龙去脉可以参考之前的文章。我们先假设θ取一个值,然后不停的修正这个值,从而使得最小化J。可以假设θ是一个山坡上一个点,而最后的导数部分是该点的坡度;学习率就是一个摩擦系数,学习率大就说明摩擦越小。

算法说明

随机梯度下降法:
1、初始化参数(θ,学习率)
2、计算每个θ处的梯度
3、更新参数
4、重复步骤 2 和 3,直到代价值稳定

随便举个例子:
下面是一个目标函数和他的导数


image

用 python 实现这两个曲线


import numpy as np
import matplotlib.pyplot as plt

def minimaFunction(theta):
    return np.cos(3*np.pi*theta)/theta

def minimaFunctionDerivative(theta):
    const1 = 3*np.pi
    const2 = const1*theta
    return -(const1*np.sin(const2)/theta)-np.cos(const2)/theta**2
#从0.1-2.1,步长0.01
theta = np.arange(.1,2.1,.01)
Jtheta = minimaFunction(theta)
dJtheta = minimaFunctionDerivative(theta)

plt.plot(theta,Jtheta,'m--',label = r'$J(\theta)$')
plt.plot(theta,dJtheta/30,'g-',label = r'$dJ(\theta)/30$')
plt.legend()

axes = plt.gca()

plt.ylabel(r'$J(\theta),dJ(\theta)/30$')
plt.xlabel(r'$\theta$')
plt.title(r'$J(\theta),dJ(\theta)/30 $ vs $\theta$')

plt.show()
image

图中虚线有3处局部最低点,在靠近0附件是全局最小的。
使用下面的程序模拟逐步找到最小值

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

#给定参数逐步找到最优值
def optimize(iterations, oF, dOF,params,learningRate):
    oParams = [params]
    #喜欢次数
    for i in range(iterations):
        # 计算参数的导数
        dParams = dOF(params)
        # 更新参数值
        params = params-learningRate*dParams
        # 参数追加到数组,方便演示
        oParams.append(params)
    return np.array(oParams)

#损失函数
def minimaFunction(theta):
    return np.cos(3*np.pi*theta)/theta
#损失函数导数
def minimaFunctionDerivative(theta):
    const1 = 3*np.pi
    const2 = const1*theta
    return -(const1*np.sin(const2)/theta)-np.cos(const2)/theta**2
#基本参数设定
theta = .6
iterations=45
learningRate = .0007
optimizedParameters = optimize(iterations,\
                               minimaFunction,\
                               minimaFunctionDerivative,\
                               theta,\
                               learningRate)

#  plt 绘制损失函数曲线
thetaR = np.arange(.1,2.1,.01)
Jtheta = minimaFunction(thetaR)

# 在损失函数上绘制参数点
JOptiTheta = minimaFunction(optimizedParameters)

# 创建动画
fig, ax = plt.subplots()
line, = ax.plot(thetaR,Jtheta,'m-')
axes = plt.gca()
axes.set_ylim([-4,6])#y 周范围
axes.set_xlim([0,2])#x周范围

# 构建动画参数
Writer = animation.writers['ffmpeg']
writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)

# 动画动作
def animate(i):
    line, = ax.plot(optimizedParameters[i],JOptiTheta[i],'or')  # update the data
    plt.title(r'Updating $\theta$ through SGD $\theta$ = %f J($\theta$) = %f' %(optimizedParameters[i],JOptiTheta[i]))
    return line,

#动画
ani = animation.FuncAnimation(fig, animate, np.arange(1, iterations),
                              interval=1, blit=True)
#保存
ani.save('sgd1.mp4', writer=writer)
image

如果我们的学习率很大,我们可以自己调参数进行测试,会发现红点数据有可能冲到另外一个坡度,形成震荡。把参数跳到0.01就可以发现这个现象。

动量 SGD

用户想要使用非常大的学习速率来快速学习感兴趣的参数。不幸的是,当代价函数波动较大时,这可能导致不稳定,之前的视频学习参数过大,基本就没什么点可以看到。
动量 SGD 试图使用过去的梯度预测学习率来解决这个问题


image
γ 和 ν 值允许用户对 dJ(θ) 的前一个值和当前值进行加权来确定新的θ值。人们通常选择γ和ν的值来创建指数加权移动平均值,如下所示: image β参数的最佳选择是 0.9。选择一个等于 1-1/t 的β值可以让用户更愿意考虑νdw 的最新 t 值。这种简单的改变可以使优化过程产生显著的结果!我们现在可以使用更大的学习率,并在尽可能短的时间内收敛!
#给定参数逐步找到最优值
def optimize(iterations, oF, dOF,params,learningRate,beta):
    oParams = [params]
    vdw=0.0
    #喜欢次数
    for i in range(iterations):
        # 计算参数的导数
        dParams = dOF(params)
        # 应用公式求得 vdw
        vdw = vdw*beta+(1.0-beta)*dParams
        # 更新参数值
        params = params-learningRate*vdw
        # 参数追加到数组,方便演示
        oParams.append(params)
    return np.array(oParams)
image

RMSProp

精益求精,我们继续看看如何再优化。
RMS prop 试图通过观察关于每个参数的函数梯度的相对大小,来改善动量函数。因此,我们可以取每个梯度平方的加权指数移动平均值,并按比例归一化梯度下降函数。具有较大梯度的参数的 sdw 值将变得比具有较小梯度的参数大得多,从而使代价函数平滑下降到最小值。可以在下面的等式中看到:


image

这里的 epsilon 是为数值稳定性而添加的,可以取 10e-7。我理解的意思是防止除以0吧。
既然公式给出了,我们就继续用代码来实现

def optimize(iterations, oF, dOF,params,learningRate,beta):
    oParams = [params]
    sdw=0.0
    eps = 10**(-7)
    #喜欢次数
    for i in range(iterations):
        # 计算参数的导数
        dParams = dOF(params)
        # 应用公式求得 sdw
        sdw = sdw*beta+(1.0-beta)*dParams**2
        # 更新参数值
        params = params-learningRate*dParams/(sdw**.5+eps)
        # 参数追加到数组,方便演示
        oParams.append(params)
    return np.array(oParams)
image

看来效果越来越好了。

Adam 算法

我们是否可以做得更好?结合上面动量和RMSProp结合成一种算法,以获得两全其美的效果。公式如下:


image

其中贝塔有2个参数,分别可以设置为0.9和0.999,贝塔的 t 次方,t 表示迭代次数(需要+1)


#给定参数逐步找到最优值
def optimize(iterations, oF, dOF,params,learningRate,beta1,beta2):
    oParams = [params]
    sdm=0.0
    vdm=0.0
    vdwCorr = 0.0
    sdwCorr = 0.0
    eps = 10**(-7)
    #喜欢次数
    for i in range(iterations):
        # 计算参数的导数
        dParams = dOF(params)
        # 应用公式求得
        vdm=vdm*beta1+(1-beta1)*dParams
        sdm=sdm*beta2+(1-beta1)*dParams**2

        vdwCorr=vdm/(1.0-beta1**(i+1))
        sdwCorr=sdm/(1.0-beta2**(i+1))

        # 更新参数值
        params = params-learningRate*vdwCorr/(sdwCorr**.5+eps)

        # 参数追加到数组,方便演示
        oParams.append(params)
    return np.array(oParams)

学习率修改为0.3,也能比较好的工作。


image

当然,针对多维也是一样操作,需要考虑导数的时候各个维度,参数也需要对应出现。

相关文章

  • 从一条曲线谈损失函数优化方法

    损失函数也叫目标函数,他是衡量预测值和实际值的相似程度的指标。我们希望预测值和真实值尽量接近,就需要估计一系列参数...

  • 从一条曲线谈损失函数优化方法

    损失函数也叫目标函数,他是衡量预测值和实际值的相似程度的指标。我们希望预测值和真实值尽量接近,就需要估计一系列参数...

  • 凸优化,梯度下降和优化算法进阶

    1. 凸优化 优化方法目标:训练集损失函数值深度学习目标:测试集损失函数值(泛化性) 1.1 优化在深度学习中的挑...

  • 梯度下降

    梯度下降,是一种基于搜索的最优化方法,其作用是用来对原始模型的损失函数进行优化,找到使损失函数(局部)最小的参数。...

  • TensorFlow从头迈步W2.4--逻辑回归(附实例Demo

    1.Tensorflow的使用:先罗列,后操作(损失函数->优化器->训练函数) 2.使用优化器的方法来优化代价函...

  • 各机器学习模型的目标函数

    目标函数和损失函数的区别 损失函数:模型拟合的越好,损失应该越小; 目标函数:优化的目标,可以是“损失函数”或者“...

  • 深度学习中的各种优化算法

    优化算法的目的是为了优化损失函数,损失函数衡量的是模型与数据的偏离程度,主要思想是计算损失函数关于参数的导数(多个...

  • 动手学深度学习(六) 凸优化

    优化与深度学习 优化与估计 尽管优化方法可以最小化深度学习中的损失函数值,但本质上优化方法达到的目标与深度学习的目...

  • 数据挖掘算法基础—损失函数的说明

    1.关于损失函数的说明 损失函数是数据挖掘优化的基础,基本上对损失函数求个偏导,也就是我们说的梯度,就是优化目标函...

  • 深度学习之——优化器

    一、什么是优化器 优化器或者优化算法,是通过训练优化参数,来最小化(最大化)损失函数。损失函数是用来计算测试集中目...

网友评论

  • LostAbaddon:“这里的 epsilon 是为数值稳定性而添加的,可以取 10e-7。我理解的意思是防止除以0吧。”
    还有一个原因是当分母过小的时候这个分式的值会过大,而且变化也会过于激烈,所以会选择这样的做法来做一个人为要求的上线。而且相对简单粗暴的max函数,这样得到的曲线在小端更光滑,效果更好。
    breezedancer:@LostAbaddon 谢谢解答
  • IT人故事会:老铁,经常看别人的分享.感谢别人的分享,感谢!关注了

本文标题:从一条曲线谈损失函数优化方法

本文链接:https://www.haomeiwen.com/subject/vnrilftx.html