动手学深度学习(六) 凸优化

作者: 致Great | 来源:发表于2020-02-18 17:17 被阅读0次

    优化与深度学习

    优化与估计

    尽管优化方法可以最小化深度学习中的损失函数值,但本质上优化方法达到的目标与深度学习的目标并不相同。

    • 优化方法目标:训练集损失函数值
    • 深度学习目标:测试集损失函数值(泛化性)
    %matplotlib inline
    import sys
    sys.path.append('/home/kesci/input')
    import d2lzh1981 as d2l
    from mpl_toolkits import mplot3d # 三维画图
    import numpy as np
    
    def f(x): return x * np.cos(np.pi * x)
    def g(x): return f(x) + 0.2 * np.cos(5 * np.pi * x)
    
    d2l.set_figsize((5, 3))
    x = np.arange(0.5, 1.5, 0.01)
    fig_f, = d2l.plt.plot(x, f(x),label="train error")
    fig_g, = d2l.plt.plot(x, g(x),'--', c='purple', label="test error")
    fig_f.axes.annotate('empirical risk', (1.0, -1.2), (0.5, -1.1),arrowprops=dict(arrowstyle='->'))
    fig_g.axes.annotate('expected risk', (1.1, -1.05), (0.95, -0.5),arrowprops=dict(arrowstyle='->'))
    d2l.plt.xlabel('x')
    d2l.plt.ylabel('risk')
    d2l.plt.legend(loc="upper right")
    
    <matplotlib.legend.Legend at 0x7fc092436080>
    

    优化在深度学习中的挑战

    1. 局部最小值
    2. 鞍点
    3. 梯度消失

    局部最小值

    f(x) = x\cos \pi x

    def f(x):
        return x * np.cos(np.pi * x)
    
    d2l.set_figsize((4.5, 2.5))
    x = np.arange(-1.0, 2.0, 0.1)
    fig,  = d2l.plt.plot(x, f(x))
    fig.axes.annotate('local minimum', xy=(-0.3, -0.25), xytext=(-0.77, -1.0),
                      arrowprops=dict(arrowstyle='->'))
    fig.axes.annotate('global minimum', xy=(1.1, -0.95), xytext=(0.6, 0.8),
                      arrowprops=dict(arrowstyle='->'))
    d2l.plt.xlabel('x')
    d2l.plt.ylabel('f(x)');
    

    鞍点

    x = np.arange(-2.0, 2.0, 0.1)
    fig, = d2l.plt.plot(x, x**3)
    fig.axes.annotate('saddle point', xy=(0, -0.2), xytext=(-0.52, -5.0),
                      arrowprops=dict(arrowstyle='->'))
    d2l.plt.xlabel('x')
    d2l.plt.ylabel('f(x)');
    

    A=\left[\begin{array}{cccc}{\frac{\partial^{2} f}{\partial x_{1}^{2}}} & {\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}} & {\cdots} & {\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}} \\ {\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}} & {\frac{\partial^{2} f}{\partial x_{2}^{2}}} & {\cdots} & {\frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} \\ {\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}} & {\frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}} & {\cdots} & {\frac{\partial^{2} f}{\partial x_{n}^{2}}}\end{array}\right]

    e.g.

    x, y = np.mgrid[-1: 1: 31j, -1: 1: 31j]
    z = x**2 - y**2
    
    d2l.set_figsize((6, 4))
    ax = d2l.plt.figure().add_subplot(111, projection='3d')
    ax.plot_wireframe(x, y, z, **{'rstride': 2, 'cstride': 2})
    ax.plot([0], [0], [0], 'ro', markersize=10)
    ticks = [-1,  0, 1]
    d2l.plt.xticks(ticks)
    d2l.plt.yticks(ticks)
    ax.set_zticks(ticks)
    d2l.plt.xlabel('x')
    d2l.plt.ylabel('y');
    

    梯度消失

    x = np.arange(-2.0, 5.0, 0.01)
    fig, = d2l.plt.plot(x, np.tanh(x))
    d2l.plt.xlabel('x')
    d2l.plt.ylabel('f(x)')
    fig.axes.annotate('vanishing gradient', (4, 1), (2, 0.0) ,arrowprops=dict(arrowstyle='->'))
    
    Text(2, 0.0, 'vanishing gradient')
    

    凸性 (Convexity)

    基础

    集合

    Image Name
    Image Name
    Image Name

    函数

    \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right) \geq f\left(\lambda x+(1-\lambda) x^{\prime}\right)

    def f(x):
        return 0.5 * x**2  # Convex
    
    def g(x):
        return np.cos(np.pi * x)  # Nonconvex
    
    def h(x):
        return np.exp(0.5 * x)  # Convex
    
    x, segment = np.arange(-2, 2, 0.01), np.array([-1.5, 1])
    d2l.use_svg_display()
    _, axes = d2l.plt.subplots(1, 3, figsize=(9, 3))
    
    for ax, func in zip(axes, [f, g, h]):
        ax.plot(x, func(x))
        ax.plot(segment, func(segment),'--', color="purple")
        # d2l.plt.plot([x, segment], [func(x), func(segment)], axes=ax)
    

    Jensen 不等式

    \sum_{i} \alpha_{i} f\left(x_{i}\right) \geq f\left(\sum_{i} \alpha_{i} x_{i}\right) \text { and } E_{x}[f(x)] \geq f\left(E_{x}[x]\right)


    性质

    1. 无局部极小值
    2. 与凸集的关系
    3. 二阶条件

    无局部最小值

    证明:假设存在 x \in X 是局部最小值,则存在全局最小值 x' \in X, 使得 f(x) > f(x'), 则对 \lambda \in(0,1]:

    f(x)>\lambda f(x)+(1-\lambda) f(x^{\prime}) \geq f(\lambda x+(1-\lambda) x^{\prime})

    与凸集的关系

    对于凸函数 f(x),定义集合 S_{b}:=\{x | x \in X \text { and } f(x) \leq b\},则集合 S_b 为凸集

    证明:对于点 x,x' \in S_b, 有 f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right) \leq b, 故 \lambda x+(1-\lambda) x^{\prime} \in S_{b}

    f(x, y)=0.5 x^{2}+\cos (2 \pi y)

    x, y = np.meshgrid(np.linspace(-1, 1, 101), np.linspace(-1, 1, 101),
                       indexing='ij')
    
    z = x**2 + 0.5 * np.cos(2 * np.pi * y)
    
    # Plot the 3D surface
    d2l.set_figsize((6, 4))
    ax = d2l.plt.figure().add_subplot(111, projection='3d')
    ax.plot_wireframe(x, y, z, **{'rstride': 10, 'cstride': 10})
    ax.contour(x, y, z, offset=-1)
    ax.set_zlim(-1, 1.5)
    
    # Adjust labels
    for func in [d2l.plt.xticks, d2l.plt.yticks, ax.set_zticks]:
        func([-1, 0, 1])
    

    凸函数与二阶导数

    f^{''}(x) \ge 0 \Longleftrightarrow f(x) 是凸函数

    必要性 (\Leftarrow):

    对于凸函数:

    \frac{1}{2} f(x+\epsilon)+\frac{1}{2} f(x-\epsilon) \geq f\left(\frac{x+\epsilon}{2}+\frac{x-\epsilon}{2}\right)=f(x)

    故:

    f^{\prime \prime}(x)=\lim _{\varepsilon \rightarrow 0} \frac{\frac{f(x+\epsilon) - f(x)}{\epsilon}-\frac{f(x) - f(x-\epsilon)}{\epsilon}}{\epsilon}

    f^{\prime \prime}(x)=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\epsilon)+f(x-\epsilon)-2 f(x)}{\epsilon^{2}} \geq 0

    充分性 (\Rightarrow):

    a < x < bf(x) 上的三个点,由拉格朗日中值定理:

    \begin{array}{l}{f(x)-f(a)=(x-a) f^{\prime}(\alpha) \text { for some } \alpha \in[a, x] \text { and }} \\ {f(b)-f(x)=(b-x) f^{\prime}(\beta) \text { for some } \beta \in[x, b]}\end{array}

    根据单调性,有 f^{\prime}(\beta) \geq f^{\prime}(\alpha), 故:

    \begin{aligned} f(b)-f(a) &=f(b)-f(x)+f(x)-f(a) \\ &=(b-x) f^{\prime}(\beta)+(x-a) f^{\prime}(\alpha) \\ & \geq(b-a) f^{\prime}(\alpha) \end{aligned}

    def f(x):
        return 0.5 * x**2
    
    x = np.arange(-2, 2, 0.01)
    axb, ab = np.array([-1.5, -0.5, 1]), np.array([-1.5, 1])
    
    d2l.set_figsize((3.5, 2.5))
    fig_x, = d2l.plt.plot(x, f(x))
    fig_axb, = d2l.plt.plot(axb, f(axb), '-.',color="purple")
    fig_ab, = d2l.plt.plot(ab, f(ab),'g-.')
    
    fig_x.axes.annotate('a', (-1.5, f(-1.5)), (-1.5, 1.5),arrowprops=dict(arrowstyle='->'))
    fig_x.axes.annotate('b', (1, f(1)), (1, 1.5),arrowprops=dict(arrowstyle='->'))
    fig_x.axes.annotate('x', (-0.5, f(-0.5)), (-1.5, f(-0.5)),arrowprops=dict(arrowstyle='->'))
    
    Text(-1.5, 0.125, 'x')
    

    限制条件

    \begin{array}{l}{\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x})} \\ {\text { subject to } c_{i}(\mathbf{x}) \leq 0 \text { for all } i \in\{1, \ldots, N\}}\end{array}

    拉格朗日乘子法

    Boyd & Vandenberghe, 2004

    L(\mathbf{x}, \alpha)=f(\mathbf{x})+\sum_{i} \alpha_{i} c_{i}(\mathbf{x}) \text { where } \alpha_{i} \geq 0

    惩罚项

    欲使 c_i(x) \leq 0, 将项 \alpha_ic_i(x) 加入目标函数,如多层感知机章节中的 \frac{\lambda}{2} ||w||^2

    投影

    \operatorname{Proj}_{X}(\mathbf{x})=\underset{\mathbf{x}^{\prime} \in X}{\operatorname{argmin}}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}

    image

    相关文章

      网友评论

        本文标题:动手学深度学习(六) 凸优化

        本文链接:https://www.haomeiwen.com/subject/wzzgfhtx.html