上文中基于spring、druid及mysql实现了基于db的数据源,本文使用kafka作为数据源。
FlinkKafkaConsumer010
flink中已经预置了kafka相关的数据源实现FlinkKafkaConsumer010,先看下具体的实现:
@PublicEvolving
public class FlinkKafkaConsumer010<T> extends FlinkKafkaConsumer09<T> {
private static final long serialVersionUID = 2324564345203409112L;
public FlinkKafkaConsumer010(String topic, DeserializationSchema<T> valueDeserializer, Properties props) {
this(Collections.singletonList(topic), valueDeserializer, props);
}
public FlinkKafkaConsumer010(String topic, KeyedDeserializationSchema<T> deserializer, Properties props) {
this(Collections.singletonList(topic), deserializer, props);
}
public FlinkKafkaConsumer010(List<String> topics, DeserializationSchema<T> deserializer, Properties props) {
this((List)topics, (KeyedDeserializationSchema)(new KeyedDeserializationSchemaWrapper(deserializer)), props);
}
public FlinkKafkaConsumer010(List<String> topics, KeyedDeserializationSchema<T> deserializer, Properties props) {
super(topics, deserializer, props);
}
@PublicEvolving
public FlinkKafkaConsumer010(Pattern subscriptionPattern, DeserializationSchema<T> valueDeserializer, Properties props) {
this((Pattern)subscriptionPattern, (KeyedDeserializationSchema)(new KeyedDeserializationSchemaWrapper(valueDeserializer)), props);
}
@PublicEvolving
public FlinkKafkaConsumer010(Pattern subscriptionPattern, KeyedDeserializationSchema<T> deserializer, Properties props) {
super(subscriptionPattern, deserializer, props);
}
......
}
kafka的Consumer有一堆实现,不过最终都是继承自FlinkKafkaConsumerBase,而这个抽象类则是继承RichParallelSourceFunction,是不是很眼熟,跟上面自定义mysql数据源继承的抽象类RichSourceFunction很类似。
public abstract class FlinkKafkaConsumerBase<T> extends RichParallelSourceFunction<T> implements CheckpointListener, ResultTypeQueryable<T>, CheckpointedFunction
可以看到,这里有很多构造函数,我们直接使用即可。
代码使用
package myflink.job;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import java.util.Properties;
/**
* kafka作为数据源,消费kafka中的消息
* 教程详见
* @See http://www.54tianzhisheng.cn/tags/Flink/
*/
public class KafkaDatasouceForFlinkJob {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties properties = new Properties();
properties.put("bootstrap.servers","localhost:9092");
properties.put("zookeeper.connect","localhost:2181");
properties.put("group.id","metric-group");
properties.put("auto.offset.reset","latest");
properties.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
DataStreamSource<String> dataStreamSource = env.addSource(
new FlinkKafkaConsumer010<String>(
"testjin" ,// topic
new SimpleStringSchema(),
properties
)
).setParallelism(1);
// dataStreamSource.print();
// 同样效果
dataStreamSource.addSink(new PrintSinkFunction<>());
env.execute("Flink add kafka data source");
}
}
说明:
a、这里直接使用properties对象来设置kafka相关配置,比如brokers、zk、groupId、序列化、反序列化等。
b、使用FlinkKafkaConsumer010构造函数,指定topic、properties配置
c、SimpleStringSchema仅针对String类型数据的序列化及反序列化,如果kafka中消息的内容不是String,则会报错;看下SimpleStringSchema的定义:
public class SimpleStringSchema implements DeserializationSchema<String>, SerializationSchema<String>
d、这里直接把获取到的消息打印出来。
至于kafka的安装、配置等,参见上文
kafka send消息:
package myflink;
import com.alibaba.fastjson.JSON;
import lombok.extern.slf4j.Slf4j;
import myflink.model.Metric;
import myflink.model.UrlInfo;
import org.apache.flink.shaded.guava18.com.google.common.collect.ImmutableMap;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Map;
import java.util.Properties;
@Slf4j
public class KafkaSender {
private static final String kafkaTopic = "testjin";
private static final String brokerAddress = "localhost:9092";
private static Properties properties;
private static void init() {
properties = new Properties();
properties.put("bootstrap.servers", brokerAddress);
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
}
public static void main(String[] args) throws InterruptedException {
init();
while (true) {
Thread.sleep(3000); // 每三秒发送过一次
sendUrlToKafka(); // 发送kafka消息
}
}
private static void sendUrlToKafka() {
KafkaProducer producer = new KafkaProducer<String, String>(properties);
UrlInfo urlInfo = new UrlInfo();
long currentMills = System.currentTimeMillis();
if (currentMills % 100 > 30) {
urlInfo.setUrl("http://so.com/" + currentMills);
} else {
urlInfo.setUrl("http://baidu.com/" + currentMills);
}
String msgContent = JSON.toJSONString(urlInfo); // 确保发送的消息都是string类型
ProducerRecord record = new ProducerRecord<String, String>(kafkaTopic, null, null, msgContent);
producer.send(record);
log.info("send msg:" + msgContent);
producer.flush();
}
}
网友评论