Regularization

作者: spraysss | 来源:发表于2020-01-28 15:54 被阅读0次

overfitting

如果特征过多,但是训练集不够时,很有可能会出现overfitting

解决overfitting的几种方法

减少特征数
  • 手动选择需要保留哪些特征
  • Model selection algorithm
Regularization

cosf function
J(\theta_0,\theta_1,...,\theta_n)=\frac{1}{2m}\sum_{i=1}^{m}(h_\theta(x^i)-y^i)^2+\frac{1}{2m}\lambda\sum_{j=1}^n\theta_j^2

  • Keep all the features,but reduce magnitude/values of parameters \theta_j
    it works well when we have a lot of features,each of which contributes a bit to predicting y

相关文章

  • regularization

    regularization 监督机器学习问题无非就是“minimizeyour error while regu...

  • Regularization

    regularization的几种方法(防止overfit): 1. add term to loss 2. dr...

  • Regularization

    overfitting 如果特征过多,但是训练集不够时,很有可能会出现overfitting 解决overfitt...

  • lecture 3

    Regularization: Model should be "simple", so it works on ...

  • DS Q&A

    What is regularization? The differences between Lasso vs ...

  • DROPOUT

    important technique for regularization 流程 Imagine that yo...

  • [NN] Regularization Summary

    Dropout: Dropout is a regularization technique. You only ...

  • regularization strength in Logi

    Q: What is the inverse of regularization strength in Logi...

  • “数据融合”总结2

    Feature fusion with covariance matrix regularization in f...

  • Elastic-net 导读

    Regularization and Variable Selection via the Elastic Net...

网友评论

    本文标题:Regularization

    本文链接:https://www.haomeiwen.com/subject/vstmthtx.html