美文网首页Python学习互联网科技
这5个Python高级应用,你确定都用过?

这5个Python高级应用,你确定都用过?

作者: 919b0c54458f | 来源:发表于2019-04-24 16:12 被阅读5次

    本文主要讲解 Python 的 5 种高级特征,以及它们的用法。

    1. Lambda 函数
      Lambda 函数是一种比较小的匿名函数——匿名是指它实际上没有函数名。
      Python 函数通常使用 def a_function_name() 样式来定义,但对于 lambda 函数,我们根本没为它命名。这是因为 lambda 函数的功能是执行某种简单的表达式或运算,而无需完全定义函数。
      lambda 函数可以使用任意数量的参数,但表达式只能有一个。
    x = lambda a, b : a * b
    print(x(5, 6)) # prints 30
    x = lambda a : a*3 + 3
    print(x(3)) # prints 12
    

    看它多么简单!我们执行了一些简单的数学运算,而无需定义整个函数。这是 Python 的众多特征之一,这些特征使它成为一种干净、简单的编程语言。

    1. Map 函数
      Map() 是一种内置的 Python 函数,它可以将函数应用于各种数据结构中的元素,如列表或字典。对于这种运算来说,这是一种非常干净而且可读的执行方式。
    def square_it_func(a):
     return a * a
    x = map(square_it_func, [1, 4, 7])
    print(x) # prints [1, 16, 47]
    def multiplier_func(a, b):
     return a * b
    x = map(multiplier_func, [1, 4, 7], [2, 5, 8])
    

    print(x) # prints [2, 20, 56] 看看上面的示例!我们可以将函数应用于单个或多个列表。实际上,你可以使用任何 Python 函数作为 map 函数的输入,只要它与你正在操作的序列元素是兼容的。

    1. Filter 函数
      filter 内置函数与 map 函数非常相似,它也将函数应用于序列结构(列表、元组、字典)。二者的关键区别在于 filter() 将只返回应用函数返回 True 的元素。
      详情请看如下示例:
    # Our numbers
    numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
    # Function that filters out all numbers which are odd
    def filter_odd_numbers(num):
     if num % 2 == 0:
     return True
     else:
     return False
    filtered_numbers = filter(filter_odd_numbers, numbers)
    print(filtered_numbers)
    # filtered_numbers = [2, 4, 6, 8, 10, 12, 14]
    

    我们不仅评估了每个列表元素的 True 或 False,filter() 函数还确保只返回匹配为 True 的元素。非常便于处理检查表达式和构建返回列表这两步。

    Python学习交流圈:556370268,有大牛答疑,有资源共享!有想学习python编程的,想提升自己能力的,欢迎加入讨论学习。

    1. Itertools 模块
      Python 的 Itertools 模块是处理迭代器的工具集合。迭代器是一种可以在 for 循环语句(包括列表、元组和字典)中使用的数据类型。
      使用 Itertools 模块中的函数让你可以执行很多迭代器操作,这些操作通常需要多行函数和复杂的列表理解。关于 Itertools 的神奇之处,请看以下示例:
    from itertools import *
    # Easy joining of two lists into a list of tuples
    for i in izip([1, 2, 3], [ a , b , c ]):
     print i
    # ( a , 1)
    # ( b , 2)
    # ( c , 3)
    # The count() function returns an interator that 
    # produces consecutive integers, forever. This 
    # one is great for adding indices next to your list 
    # elements for readability and convenience
    for i in izip(count(1), [ Bob , Emily , Joe ]):
     print i
    # (1, Bob )
    # (2, Emily )
    # (3, Joe ) 
    # The dropwhile() function returns an iterator that returns 
    # all the elements of the input which come after a certain 
    # condition becomes false for the first time. 
    def check_for_drop(x):
     print Checking: , x
     return (x > 5)
    for i in dropwhile(should_drop, [2, 4, 6, 8, 10, 12]):
     print Result: , i
    # Checking: 2
    # Checking: 4
    # Result: 6
    # Result: 8
    # Result: 10
    # Result: 12
    # The groupby() function is great for retrieving bunches
    # of iterator elements which are the same or have similar 
    # properties
    a = sorted([1, 2, 1, 3, 2, 1, 2, 3, 4, 5])
    for key, value in groupby(a):
     print(key, value), end= )
    # (1, [1, 1, 1])
    # (2, [2, 2, 2]) 
    # (3, [3, 3]) 
    # (4, [4]) 
    # (5, [5]) 
    
    1. Generator 函数
      Generator 函数是一个类似迭代器的函数,即它也可以用在 for 循环语句中。这大大简化了你的代码,而且相比简单的 for 循环,它节省了很多内存。
      比如,我们想把 1 到 1000 的所有数字相加,以下代码块的第一部分向你展示了如何使用 for 循环来进行这一计算。
      如果列表很小,比如 1000 行,计算所需的内存还行。但如果列表巨长,比如十亿浮点数,这样做就会出现问题了。使用这种 for 循环,内存中将出现大量列表,但不是每个人都有无限的 RAM 来存储这么多东西的。Python 中的 range() 函数也是这么干的,它在内存中构建列表。
      代码中第二部分展示了使用 Python generator 函数对数字列表求和。generator 函数创建元素,并只在必要时将其存储在内存中,即一次一个。这意味着,如果你要创建十亿浮点数,你只能一次一个地把它们存储在内存中!Python 2.x 中的 xrange() 函数就是使用 generator 来构建列表。
      上述例子说明:如果你想为一个很大的范围生成列表,那么就需要使用 generator 函数。如果你的内存有限,比如使用移动设备或边缘计算,使用这一方法尤其重要。
      也就是说,如果你想对列表进行多次迭代,并且它足够小,可以放进内存,那最好使用 for 循环或 Python 2.x 中的 range 函数。因为 generator 函数和 xrange 函数将会在你每次访问它们时生成新的列表值,而 Python 2.x range 函数是静态的列表,而且整数已经置于内存中,以便快速访问。
    # (1) Using a for loopv
    numbers = list()
    for i in range(1000):
     numbers.append(i+1)
    total = sum(numbers)
    # (2) Using a generator
     def generate_numbers(n):
     num, numbers = 1, []
     while num < n:
     numbers.append(num)
     num += 1
     return numbers
     total = sum(generate_numbers(1000))
     # (3) range() vs xrange()
     total = sum(range(1000 + 1))
     total = sum(xrange(1000 + 1))
    

    相关文章

      网友评论

        本文标题:这5个Python高级应用,你确定都用过?

        本文链接:https://www.haomeiwen.com/subject/vyiggqtx.html