美文网首页JAVA
HashMap源码解析(jdk1.7)

HashMap源码解析(jdk1.7)

作者: 爱的旋转体 | 来源:发表于2022-05-20 12:01 被阅读0次

    https://github.com/xuzhipeng1028/jdk7

    HashMap类源码

    /*
     * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     */
    
    package java.util;
    import java.io.*;
    
    /**
     * Hash table based implementation of the <tt>Map</tt> interface.  This
     * implementation provides all of the optional map operations, and permits
     * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
     * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
     * unsynchronized and permits nulls.)  This class makes no guarantees as to
     * the order of the map; in particular, it does not guarantee that the order
     * will remain constant over time.
     *
     * map接口基于hash表的实现。
     * 这个实现提供了所有可选的map操作,允许null键和null值。
     * 这个HashMap类大致相当于Hashtable,除了它是线程不安全的和允许null。
     * 这个类不保证map的顺序,尤其它不保证随着时间推移,顺序一直保持不变。
     *
     * <p>This implementation provides constant-time performance for the basic
     * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
     * disperses the elements properly among the buckets.  Iteration over
     * collection views requires time proportional to the "capacity" of the
     * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
     * of key-value mappings).  Thus, it's very important not to set the initial
     * capacity too high (or the load factor too low) if iteration performance is
     * important.
     *
     * 这个实现为get和put方法提供了常数时间的性能,假设哈希函数将元素正确地分散在桶中。
     * 集合视图的迭代需要的时间与 HashMap 实例的“容量”(桶的数量)加上它的大小(键值映射的数量)成正比。
     * 因此,如果迭代性能重要的话,不要设置初始容量太大或者加载因子太小。
     *
     * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
     * performance: <i>initial capacity</i> and <i>load factor</i>.  The
     * <i>capacity</i> is the number of buckets in the hash table, and the initial
     * capacity is simply the capacity at the time the hash table is created.  The
     * <i>load factor</i> is a measure of how full the hash table is allowed to
     * get before its capacity is automatically increased.  When the number of
     * entries in the hash table exceeds the product of the load factor and the
     * current capacity, the hash table is <i>rehashed</i> (that is, internal data
     * structures are rebuilt) so that the hash table has approximately twice the
     * number of buckets.
     *
     * 一个HashMap的实例有两个参数影响它的性能:初始化容量和加载因子。
     * 容量是hash表中桶的数量,初始化容量只是创建hash表时的容量。
     * 加载因子是衡量哈希表在其容量自动增加之前允许达到的程度。
     * 当hash表中entry的数量超过了加载因子和当前容量的乘积,hash表就会重新进行散列(也就是内部的数据结构重新构建),桶的大小大约是变成两倍。
     *
     * <p>As a general rule, the default load factor (.75) offers a good tradeoff
     * between time and space costs.  Higher values decrease the space overhead
     * but increase the lookup cost (reflected in most of the operations of the
     * <tt>HashMap</tt> class, including <tt>get</tt> and <tt>put</tt>).  The
     * expected number of entries in the map and its load factor should be taken
     * into account when setting its initial capacity, so as to minimize the
     * number of rehash operations.  If the initial capacity is greater
     * than the maximum number of entries divided by the load factor, no
     * rehash operations will ever occur.
     *
     * 作为基本规则,默认的加载因子0.75在时间成本和空间成本之间提供了一个好的权衡。
     * 更高的值会降低空间成本,但是增加了查找成本(影响了HashMap大部分操作,包括get和put)。
     * 当设置初始化容量时,map的被期望的entry的数量和加载因子应该被考虑到,以便最小化重新散列操作的次数。
     * 如果初始化容量高于entry的最大数量除以加载因子,则rehash操作永远不会发生。
     *
     * <p>If many mappings are to be stored in a <tt>HashMap</tt> instance,
     * creating it with a sufficiently large capacity will allow the mappings to
     * be stored more efficiently than letting it perform automatic rehashing as
     * needed to grow the table.
     *
     * 如果许多映射将会被存储在一个HashMap实例中,那么与让它有需要的时候自动rehash,用一个足够大的容量创建实例将会更有效率的存储。
     *
     * <p><strong>Note that this implementation is not synchronized.</strong>
     * If multiple threads access a hash map concurrently, and at least one of
     * the threads modifies the map structurally, it <i>must</i> be
     * synchronized externally.  (A structural modification is any operation
     * that adds or deletes one or more mappings; merely changing the value
     * associated with a key that an instance already contains is not a
     * structural modification.)  This is typically accomplished by
     * synchronizing on some object that naturally encapsulates the map.
     *
     * 注意这个实现是线程不安全的。
     * 如果多个线程并发访问同一个map,并且至少有一个线程会修改map的结构,它必须在外部进行同步。
     * (结构化的修改是任何一个添加或修改一个或多个映射的操作,仅仅改变一个已经存在的key的value不是一个结构化的修改。)
     * 这通常是通过同步一些自然封装map的对象来完成的。
     *
     * If no such object exists, the map should be "wrapped" using the
     * {@link Collections#synchronizedMap Collections.synchronizedMap}
     * method.  This is best done at creation time, to prevent accidental
     * unsynchronized access to the map:<pre>
     *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
     *
     * 如果没有这样的对象存在,map应该使用Collections.synchronizedMap方法进行包装。
     * 这最好在创建时完成,以防止偶然的非同步的访问该map。
     *
     * <p>The iterators returned by all of this class's "collection view methods"
     * are <i>fail-fast</i>: if the map is structurally modified at any time after
     * the iterator is created, in any way except through the iterator's own
     * <tt>remove</tt> method, the iterator will throw a
     * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
     * modification, the iterator fails quickly and cleanly, rather than risking
     * arbitrary, non-deterministic behavior at an undetermined time in the
     * future.
     *
     * 所有该类的集合视图方法返回的迭代器都是快速失败的。
     * 如果在迭代器被创建后在任何时候结构化的修改map,
     * 除了通过迭代器自己的 remove 方法之外的任何方式,迭代器都会抛出一个ConcurrentModificationException异常。
     * 因此,迭代器快速而干净地失败,而不是在未来不确定的时间冒任意的、非确定性的行为的风险。
     *
     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
     * as it is, generally speaking, impossible to make any hard guarantees in the
     * presence of unsynchronized concurrent modification.  Fail-fast iterators
     * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
     * Therefore, it would be wrong to write a program that depended on this
     * exception for its correctness: <i>the fail-fast behavior of iterators
     * should be used only to detect bugs.</i>
     *
     * 注意:迭代器快速失败的行为不能像它说的那样被保证,
     * 一般来说,在存在不同步的并发修改的情况下不可能做出任何硬保证。
     * 快速失败的迭代器会尽最大努力抛出ConcurrentModificationException。
     * 因此,编写一个依赖于这个异常的正确性的程序是错误的:迭代器的快速失败行为应该只用于检测bug。
     *
     * <p>This class is a member of the
     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
     * Java Collections Framework</a>.
     *
     * @param <K> the type of keys maintained by this map
     * @param <V> the type of mapped values
     *
     * @author  Doug Lea
     * @author  Josh Bloch
     * @author  Arthur van Hoff
     * @author  Neal Gafter
     * @see     Object#hashCode()
     * @see     Collection
     * @see     Map
     * @see     TreeMap
     * @see     Hashtable
     * @since   1.2
     */
    
    public class HashMap<K,V>
        extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable
    {
    
        /**
         * The default initial capacity - MUST be a power of two.
         * 默认初始化容量16,必须是2的幂次方
         */
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
        /**
         * The maximum capacity, used if a higher value is implicitly specified
         * by either of the constructors with arguments.
         * MUST be a power of two <= 1<<30.
         * 最大容量,如果任何一个带参数的构造函数隐式指定了更高的值,则使用该最大值
         * 必须是2的幂次方,且必须小于等于2的30次方
         */
        static final int MAXIMUM_CAPACITY = 1 << 30;
    
        /**
         * The load factor used when none specified in constructor.
         * 当没有在构造函数指定时,使用该默认加载因子
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
        /**
         * An empty table instance to share when the table is not inflated.
         * 当数组没有初始化时共享的空数组实例
         */
        static final Entry<?,?>[] EMPTY_TABLE = {};
    
        /**
         * The table, resized as necessary. Length MUST Always be a power of two.
         * 数组,根据需要调整大小,数组长度必须是2的幂次方
         */
        transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
    
        /**
         * The number of key-value mappings contained in this map.
         * map中实际元素的个数
         */
        transient int size;
    
        /**
         * The next size value at which to resize (capacity * load factor).
         * 下次数组扩容的阈值,等于数组容量*加载因子
         * @serial
         */
        // If table == EMPTY_TABLE then this is the initial capacity at which the
        // table will be created when inflated.
        //如果 table == EMPTY_TABLE 那么这是膨胀时创建表的初始容量
        int threshold;
    
        /**
         * The load factor for the hash table.
         * hash表的加载因子
         * @serial
         */
        final float loadFactor;
    
        /**
         * The number of times this HashMap has been structurally modified
         * Structural modifications are those that change the number of mappings in
         * the HashMap or otherwise modify its internal structure (e.g.,
         * rehash).  This field is used to make iterators on Collection-views of
         * the HashMap fail-fast.  (See ConcurrentModificationException).
         * 这个hashmap已经在结构上被修改的次数,
         * 结构上的修改指的是改变hashmap映射数量或修改它内部结构(比如重新计算hash值),
         * 这个字段被用来当使用迭代器迭代时快速失败。
         */
        transient int modCount;
    
        /**
         * The default threshold of map capacity above which alternative hashing is
         * used for String keys. Alternative hashing reduces the incidence of
         * collisions due to weak hash code calculation for String keys.
         * map容量的默认阈值,替代散列用于字符串键。
         * 由于String类型键的散列码计算较弱,替代散列降低了冲突的发生率
         * <p/>
         * This value may be overridden by defining the system property
         * {@code jdk.map.althashing.threshold}. A property value of {@code 1}
         * forces alternative hashing to be used at all times whereas
         * {@code -1} value ensures that alternative hashing is never used.
         * 这个值可能被定义在系统属性{@code jdk.map.althashing.threshold}覆盖,
         * 值为1会强制替代散列在每时每刻被使用,然而值为-1会确保替代散列从来不会被使用。
         */
        static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
    
        /**
         * holds values which can't be initialized until after VM is booted.
         * 保证在虚拟机启动会才进行初始化
         */
        private static class Holder {
    
            /**
             * Table capacity above which to switch to use alternative hashing.
             * 切换到使用替代散列的表容量
             */
            static final int ALTERNATIVE_HASHING_THRESHOLD;
    
            static {
                String altThreshold = java.security.AccessController.doPrivileged(
                    new sun.security.action.GetPropertyAction(
                        "jdk.map.althashing.threshold"));
    
                int threshold;
                try {
                    // 如果设置了系统属性值(jdk.map.althashing.threshold)则使用系统属性值,
                    // 否则使用默认的ALTERNATIVE_HASHING_THRESHOLD_DEFAULT
                    threshold = (null != altThreshold)
                            ? Integer.parseInt(altThreshold)
                            : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;
    
                    // disable alternative hashing if -1
                    // 如果阈值为-1,则设置为Integer.MAX_VALUE
                    if (threshold == -1) {
                        threshold = Integer.MAX_VALUE;
                    }
                    // 阈值必须是正整数
                    if (threshold < 0) {
                        throw new IllegalArgumentException("value must be positive integer.");
                    }
                } catch(IllegalArgumentException failed) {
                    throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
                }
    
                ALTERNATIVE_HASHING_THRESHOLD = threshold;
            }
        }
    
        /**
         * A randomizing value associated with this instance that is applied to
         * hash code of keys to make hash collisions harder to find. If 0 then
         * alternative hashing is disabled.
         * 一个和当前实例关联的随机值被应用到key的hasn值计算中,以降低hash冲突。
         * 如果设置为0那么替代散列将被禁用
         */
        transient int hashSeed = 0;
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and load factor.
         * 指定初始化容量和加载因子的空hashmap的构造函数
         *
         * @param  initialCapacity the initial capacity 初始化容量
         * @param  loadFactor      the load factor 加载因子
         * @throws IllegalArgumentException if the initial capacity is negative
         *         or the load factor is nonpositive 如果初始化容量是负数或者加载因子是非正数则抛出异常
         */
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            // 自定义的容量大于最大容量则被设置成最大容量
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
    
            this.loadFactor = loadFactor;
            threshold = initialCapacity;
            init();
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and the default load factor (0.75).
         * 指定初始化容量,使用默认加载因子0.75的构造函数
         *
         * @param  initialCapacity the initial capacity.
         * @throws IllegalArgumentException if the initial capacity is negative.
         */
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the default initial capacity
         * (16) and the default load factor (0.75).
         * hashmap无参构造,指定默认的初始化容量16和默认的加载因子0.75
         */
        public HashMap() {
            this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs a new <tt>HashMap</tt> with the same mappings as the
         * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
         * default load factor (0.75) and an initial capacity sufficient to
         * hold the mappings in the specified <tt>Map</tt>.
         * 用指定map来构造一个新的hashmap。
         * 使用默认的加载因子0.75,一个足够容纳指定map大小的初始化容量。
         *
         * @param   m the map whose mappings are to be placed in this map
         * @throws  NullPointerException if the specified map is null
         */
        public HashMap(Map<? extends K, ? extends V> m) {
            this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                          DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
            inflateTable(threshold);
    
            putAllForCreate(m);
        }
    
        /**
         * 获取大于等于number的最小的2的幂次方数
         * @param number 必须是非负数
         * @return
         */
        private static int roundUpToPowerOf2(int number) {
            // assert number >= 0 : "number must be non-negative";
            // 如果number >= 最大容量,返回最大容量;如果 <= 1,返回1;
            // 否则当 1 < number < MAXIMUM_CAPACITY, 返回Integer.highestOneBit((number - 1) << 1),
            // Integer.highestOneBit(i)返回小于等于i的最大的2的幂次方,
            // number=15,Integer.highestOneBit((number - 1) << 1) -> 16
            // number=16,Integer.highestOneBit((number - 1) << 1) -> 16
            // number=17,Integer.highestOneBit((number - 1) << 1) -> 32
            // number-1是为了处理number正好是2的幂次方的情况
            return number >= MAXIMUM_CAPACITY
                    ? MAXIMUM_CAPACITY
                    : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
        }
    
        /**
         * Inflates the table.
         * 初始化数组
         */
        private void inflateTable(int toSize) {
            // Find a power of 2 >= toSize
            // 获取大于等于toSize的最小的2的幂次方数
            int capacity = roundUpToPowerOf2(toSize);
            // 取容量*加载因子和最大容量+1中的较小者作为阈值
            threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
            // 初始化table
            table = new Entry[capacity];
            initHashSeedAsNeeded(capacity);
        }
    
        // internal utilities
    
        /**
         * Initialization hook for subclasses. This method is called
         * in all constructors and pseudo-constructors (clone, readObject)
         * after HashMap has been initialized but before any entries have
         * been inserted.  (In the absence of this method, readObject would
         * require explicit knowledge of subclasses.)
         * 为子类预留的初始化钩子函数,
         * 在初始化hashmap之后但在任何一个元素插入之前,在所有构造函数和伪构造函数中调用该方法。
         * (如果没有该方法,readObject需要明确了解子类)
         */
        void init() {
        }
    
        /**
         * Initialize the hashing mask value. We defer initialization until we
         * really need it.
         * 初始化散列掩码值。当我们真正需要它时在进行初始化。
         */
        final boolean initHashSeedAsNeeded(int capacity) {
            boolean currentAltHashing = hashSeed != 0;
            boolean useAltHashing = sun.misc.VM.isBooted() &&
                    (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
            boolean switching = currentAltHashing ^ useAltHashing;
            // 当switching为true时重新设置hashSeed,有以下两种情况:
            // 1.currentAltHashing = true(hashSeed != 0),useAltHashing = false(容量 < Holder.ALTERNATIVE_HASHING_THRESHOLD),
            // 2.currentAltHashing = false(hashSeed == 0),useAltHashing = true(容量 >= Holder.ALTERNATIVE_HASHING_THRESHOLD),
            if (switching) {
                hashSeed = useAltHashing
                    ? sun.misc.Hashing.randomHashSeed(this)
                    : 0;
            }
            return switching;
        }
    
        /**
         * Retrieve object hash code and applies a supplemental hash function to the
         * result hash, which defends against poor quality hash functions.  This is
         * critical because HashMap uses power-of-two length hash tables, that
         * otherwise encounter collisions for hashCodes that do not differ
         * in lower bits. Note: Null keys always map to hash 0, thus index 0.
         * 检索对象散列码并将补充散列函数应用于结果散列,以防止质量差的散列函数。
         * 这很关键,因为 HashMap 使用长度为二的幂的哈希表,否则会遇到低位没有差异的 hashCode 的冲突。
         * 注意:空键总是映射到哈希 0,因此索引 0。
         */
        final int hash(Object k) {
            int h = hashSeed;
            if (0 != h && k instanceof String) {
                return sun.misc.Hashing.stringHash32((String) k);
            }
    
            h ^= k.hashCode();
    
            // This function ensures that hashCodes that differ only by
            // constant multiples at each bit position have a bounded
            // number of collisions (approximately 8 at default load factor).
            h ^= (h >>> 20) ^ (h >>> 12);
            return h ^ (h >>> 7) ^ (h >>> 4);
        }
    
        /**
         * Returns index for hash code h.
         * 返回指定hash值在指定大小数组中的位置。
         */
        static int indexFor(int h, int length) {
            // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
            // 相当于取余 h % length
            return h & (length-1);
        }
    
        /**
         * Returns the number of key-value mappings in this map.
         *
         * @return the number of key-value mappings in this map
         */
        public int size() {
            return size;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains no key-value mappings.
         *
         * @return <tt>true</tt> if this map contains no key-value mappings
         */
        public boolean isEmpty() {
            return size == 0;
        }
    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         * 返回指定key的value
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
         * key.equals(k))}, then this method returns {@code v}; otherwise
         * it returns {@code null}.  (There can be at most one such mapping.)
         * 更正式地说,如果此映射包含从键 {@code k} 到值 {@code v} 的映射,
         * 使得 {@code (key==null ? k==null : key.equals(k))},然后这个方法返回 {@code v};
         * 否则返回 {@code null}。 (最多可以有一个这样的映射。)
         *
         * <p>A return value of {@code null} does not <i>necessarily</i>
         * indicate that the map contains no mapping for the key; it's also
         * possible that the map explicitly maps the key to {@code null}.
         * The {@link #containsKey containsKey} operation may be used to
         * distinguish these two cases.
         * 返回值为null不能表明map中不包含该key,也有可能是key的value就是null。
         * containsKey方法会区分两种情况。
         *
         * @see #put(Object, Object)
         */
        public V get(Object key) {
            if (key == null)
                return getForNullKey();
            Entry<K,V> entry = getEntry(key);
    
            return null == entry ? null : entry.getValue();
        }
    
        /**
         * Offloaded version of get() to look up null keys.  Null keys map
         * to index 0.  This null case is split out into separate methods
         * for the sake of performance in the two most commonly used
         * operations (get and put), but incorporated with conditionals in
         * others.
         * 查找空键的get方法。
         * 空键映射到数组的0号位置。
         * 为了提高两个最常用操作(get 和 put)的性能,这种 null 情况被拆分为单独的方法,但在其他操作中与条件结合。
         */
        private V getForNullKey() {
            if (size == 0) {
                return null;
            }
            for (Entry<K,V> e = table[0]; e != null; e = e.next) {
                if (e.key == null)
                    return e.value;
            }
            return null;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains a mapping for the
         * specified key.
         * 如果map包含指定key则返回true
         *
         * @param   key   The key whose presence in this map is to be tested
         * @return <tt>true</tt> if this map contains a mapping for the specified
         * key.
         */
        public boolean containsKey(Object key) {
            return getEntry(key) != null;
        }
    
        /**
         * Returns the entry associated with the specified key in the
         * HashMap.  Returns null if the HashMap contains no mapping
         * for the key.
         * 返回map中指定key的entry。
         * 如果map中不包含该key,则返回null。
         */
        final Entry<K,V> getEntry(Object key) {
            if (size == 0) {
                return null;
            }
    
            int hash = (key == null) ? 0 : hash(key);
            for (Entry<K,V> e = table[indexFor(hash, table.length)];
                 e != null;
                 e = e.next) {
                Object k;
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            }
            return null;
        }
    
        /**
         * Associates the specified value with the specified key in this map.
         * If the map previously contained a mapping for the key, the old
         * value is replaced.
         * 在map将指定的key和value进行关联。
         * 如果map已经包含了该key的,则旧的值将会被替换成新的。
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         *         该方法返回与指定key关联的旧的value,如果map中没有该key的话则返回null。
         *         null返回值也可以表示map中过去与该key关联的值就是null。
         */
        public V put(K key, V value) {
            // 如果当前数组==EMPTY_TABLE表示数组还没有初始化,那么先初始化数组,再继续插入
            if (table == EMPTY_TABLE) {
                inflateTable(threshold);
            }
            // 1.7hashmap允许key和value为null
            if (key == null)
                return putForNullKey(value);
            int hash = hash(key);
            int i = indexFor(hash, table.length);
            // 遍历数组指定位置的链表,找到指定key,并替换value,将旧值返回
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                Object k;
                if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;
                }
            }
    
            modCount++;
            // 之前没有的话则插入一个新的
            addEntry(hash, key, value, i);
            return null;
        }
    
        /**
         * Offloaded version of put for null keys
         * 插入key为null的元素,插到了数组中索引为0的位置
         */
        private V putForNullKey(V value) {
            // 遍历数组中索引为0的位置的链表,找到key为nul的元素,替换value,返回旧值
            for (Entry<K,V> e = table[0]; e != null; e = e.next) {
                if (e.key == null) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;
                }
            }
            modCount++;
            //链表中没找到key为null的元素,则插入新的元素
            addEntry(0, null, value, 0);
            return null;
        }
    
        /**
         * This method is used instead of put by constructors and
         * pseudoconstructors (clone, readObject).  It does not resize the table,
         * check for comodification, etc.  It calls createEntry rather than
         * addEntry.
         * 这个方法被用来替代put方法,该方法不会扩容数组,检查修改次数等。
         * 它调用createEntry方法而不是addEntry方法。
         */
        private void putForCreate(K key, V value) {
            int hash = null == key ? 0 : hash(key);
            int i = indexFor(hash, table.length);
    
            /**
             * Look for preexisting entry for key.  This will never happen for
             * clone or deserialize.  It will only happen for construction if the
             * input Map is a sorted map whose ordering is inconsistent w/ equals.
             * 寻找指定key已存在的entry,存在则替换value。
             * 对于clone or deserialize永远不会发生。
             */
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                Object k;
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                    e.value = value;
                    return;
                }
            }
    
            createEntry(hash, key, value, i);
        }
    
        private void putAllForCreate(Map<? extends K, ? extends V> m) {
            // 遍历指定map中的所有元素放入当前map中
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
                putForCreate(e.getKey(), e.getValue());
        }
    
        /**
         * Rehashes the contents of this map into a new array with a
         * larger capacity.  This method is called automatically when the
         * number of keys in this map reaches its threshold.
         * 将map中的数据放入一个更大容量的数组中。
         * 当map中key的数量达到了阈值,这个方法会被自动调用。
         *
         * If current capacity is MAXIMUM_CAPACITY, this method does not
         * resize the map, but sets threshold to Integer.MAX_VALUE.
         * This has the effect of preventing future calls.
         * 如果当前数组容量已经达到了最大值,这个方法不会扩容,但是会将阈值设置成Integer.MAX_VALUE。
         * 这防止了将来被再次调用。
         *
         * @param newCapacity the new capacity, MUST be a power of two;
         *        must be greater than current capacity unless current
         *        capacity is MAXIMUM_CAPACITY (in which case value
         *        is irrelevant).
         *        数组新容量大小,必须是2的幂次方;必须大于当前容量,除非当前容量已经是最大值,
         *        这种情况下新容量是多少就无关紧要了。
         *
         */
        void resize(int newCapacity) {
            Entry[] oldTable = table;
            int oldCapacity = oldTable.length;
            // 如果当前数组容量已经达到了最大值,这个方法不会扩容,但是会将阈值设置成Integer.MAX_VALUE。
            if (oldCapacity == MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return;
            }
            // 创建新数组
            Entry[] newTable = new Entry[newCapacity];
            // 将旧数组中的元素全部转移到新数组中
            transfer(newTable, initHashSeedAsNeeded(newCapacity));
            table = newTable;
            threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
        }
    
        /**
         * Transfers all entries from current table to newTable.
         * 将旧数组中的所有元素转移到新数组中
         */
        void transfer(Entry[] newTable, boolean rehash) {
            int newCapacity = newTable.length;
            // 遍历旧数组
            for (Entry<K,V> e : table) {
                // 遍历数组中每一个位置的链表
                while(null != e) {
                    Entry<K,V> next = e.next;
                    // 是否需要重新计算hash值,默认是不需要的,除非自定义了系统属性(jdk.map.althashing.threshold),并且满足相关条件。
                    if (rehash) {
                        e.hash = null == e.key ? 0 : hash(e.key);
                    }
                    // 计算每一个节点在新数组中的位置。
                    int i = indexFor(e.hash, newCapacity);
                    // 采用头插法,将每一个元素设置为新的头结点,之前的头结点作为next
                    e.next = newTable[i];
                    newTable[i] = e;
                    e = next;
                }
            }
        }
    
        /**
         * Copies all of the mappings from the specified map to this map.
         * These mappings will replace any mappings that this map had for
         * any of the keys currently in the specified map.
         * 把指定map中的元素全部放入当前map中。
         *
         *
         * @param m mappings to be stored in this map
         * @throws NullPointerException if the specified map is null
         */
        public void putAll(Map<? extends K, ? extends V> m) {
            int numKeysToBeAdded = m.size();
            if (numKeysToBeAdded == 0)
                return;
    
            // 如果当前map的数组还未初始化,先初始化
            if (table == EMPTY_TABLE) {
                inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));
            }
    
            /*
             * Expand the map if the map if the number of mappings to be added
             * is greater than or equal to threshold.  This is conservative; the
             * obvious condition is (m.size() + size) >= threshold, but this
             * condition could result in a map with twice the appropriate capacity,
             * if the keys to be added overlap with the keys already in this map.
             * By using the conservative calculation, we subject ourself
             * to at most one extra resize.
             * 如果指定map的元素个数大于当前map的阈值则扩容当前map。
             * 这是保守的,明显的条件应该是指定map的大小+当前map的大小的和是否 >= 阈值,
             * 但是这个条件可能导致当前map有两倍的合适的容量,因为有可能有些key已经存在当前map中。
             * 使用保守的计算,我们控制自己最多一个额外的扩容。
             */
            if (numKeysToBeAdded > threshold) {
                int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
                if (targetCapacity > MAXIMUM_CAPACITY)
                    targetCapacity = MAXIMUM_CAPACITY;
                int newCapacity = table.length;
                while (newCapacity < targetCapacity)
                    newCapacity <<= 1;
                if (newCapacity > table.length)
                    resize(newCapacity);
            }
    
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
                put(e.getKey(), e.getValue());
        }
    
        /**
         * Removes the mapping for the specified key from this map if present.
         * 如果map中存在指定key的话则删除该key的映射。
         *
         * @param  key key whose mapping is to be removed from the map
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         *         返回指定key的旧值,如果返回null,可能表示没有该key,也可能表示该key的值就是null。
         */
        public V remove(Object key) {
            Entry<K,V> e = removeEntryForKey(key);
            return (e == null ? null : e.value);
        }
    
        /**
         * Removes and returns the entry associated with the specified key
         * in the HashMap.  Returns null if the HashMap contains no mapping
         * for this key.
         * 删除指定key,并返回对应的entry。
         * 如果没有指定key,则返回null。
         */
        final Entry<K,V> removeEntryForKey(Object key) {
            if (size == 0) {
                return null;
            }
            int hash = (key == null) ? 0 : hash(key);
            int i = indexFor(hash, table.length);
            // 链表中的前一个节点
            Entry<K,V> prev = table[i];
            // 链表中遍历的当前节点
            Entry<K,V> e = prev;
    
            while (e != null) {
                // 当前节点的下一个节点
                Entry<K,V> next = e.next;
                Object k;
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                    modCount++;
                    size--;
                    // 找到指定key,如果前一个节点等于当前节点,表示是头节点,则将下一个节点作为新的头结点,否则将前一个节点的next指针指向当前节点的next
                    if (prev == e)
                        table[i] = next;
                    else
                        prev.next = next;
                    e.recordRemoval(this);
                    return e;
                }
                prev = e;
                e = next;
            }
    
            return e;
        }
    
        /**
         * Special version of remove for EntrySet using {@code Map.Entry.equals()}
         * for matching.
         * EntrySet特殊版本的删除,使用Map.Entry.equals()进行匹配
         */
        final Entry<K,V> removeMapping(Object o) {
            if (size == 0 || !(o instanceof Map.Entry))
                return null;
    
            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
            Object key = entry.getKey();
            int hash = (key == null) ? 0 : hash(key);
            int i = indexFor(hash, table.length);
            Entry<K,V> prev = table[i];
            Entry<K,V> e = prev;
    
            while (e != null) {
                Entry<K,V> next = e.next;
                if (e.hash == hash && e.equals(entry)) {
                    modCount++;
                    size--;
                    if (prev == e)
                        table[i] = next;
                    else
                        prev.next = next;
                    e.recordRemoval(this);
                    return e;
                }
                prev = e;
                e = next;
            }
    
            return e;
        }
    
        /**
         * Removes all of the mappings from this map.
         * The map will be empty after this call returns.
         * 清空map,用null填充数组,大小设置为0
         */
        public void clear() {
            modCount++;
            Arrays.fill(table, null);
            size = 0;
        }
    
        /**
         * Returns <tt>true</tt> if this map maps one or more keys to the
         * specified value.
         * 如果map中至少有一个key的value是指定的value,则返回true
         *
         * @param value value whose presence in this map is to be tested
         * @return <tt>true</tt> if this map maps one or more keys to the
         *         specified value
         */
        public boolean containsValue(Object value) {
            if (value == null)
                return containsNullValue();
    
            Entry[] tab = table;
            // 遍历数组
            for (int i = 0; i < tab.length ; i++)
                // 遍历数组中每一个位置的链表,只要有一个value与指定的value相等,则返回true,否则返回false
                for (Entry e = tab[i] ; e != null ; e = e.next)
                    if (value.equals(e.value))
                        return true;
            return false;
        }
    
        /**
         * Special-case code for containsValue with null argument
         * 是否包含null的value的特殊方法
         */
        private boolean containsNullValue() {
            Entry[] tab = table;
            // 遍历数组
            for (int i = 0; i < tab.length ; i++)
                // 遍历数组中每一个位置的链表,只要有一个value是null,则返回true;否则返回false
                for (Entry e = tab[i] ; e != null ; e = e.next)
                    if (e.value == null)
                        return true;
            return false;
        }
    
        /**
         * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
         * values themselves are not cloned.
         * 返回当前map的浅拷贝,key和value与当前map中是同一个引用
         *
         * @return a shallow copy of this map
         */
        public Object clone() {
            HashMap<K,V> result = null;
            try {
                result = (HashMap<K,V>)super.clone();
            } catch (CloneNotSupportedException e) {
                // assert false;
            }
            if (result.table != EMPTY_TABLE) {
                result.inflateTable(Math.min(
                    (int) Math.min(
                        size * Math.min(1 / loadFactor, 4.0f),
                        // we have limits...
                        HashMap.MAXIMUM_CAPACITY),
                   table.length));
            }
            result.entrySet = null;
            result.modCount = 0;
            result.size = 0;
            result.init();
            result.putAllForCreate(this);
    
            return result;
        }
    
        static class Entry<K,V> implements Map.Entry<K,V> {
            final K key;
            V value;
            Entry<K,V> next;
            int hash;
    
            /**
             * Creates new entry.
             */
            Entry(int h, K k, V v, Entry<K,V> n) {
                value = v;
                next = n;
                key = k;
                hash = h;
            }
    
            public final K getKey() {
                return key;
            }
    
            public final V getValue() {
                return value;
            }
    
            public final V setValue(V newValue) {
                V oldValue = value;
                value = newValue;
                return oldValue;
            }
    
            public final boolean equals(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry e = (Map.Entry)o;
                Object k1 = getKey();
                Object k2 = e.getKey();
                if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                    Object v1 = getValue();
                    Object v2 = e.getValue();
                    if (v1 == v2 || (v1 != null && v1.equals(v2)))
                        return true;
                }
                return false;
            }
    
            public final int hashCode() {
                return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
            }
    
            public final String toString() {
                return getKey() + "=" + getValue();
            }
    
            /**
             * This method is invoked whenever the value in an entry is
             * overwritten by an invocation of put(k,v) for a key k that's already
             * in the HashMap.
             */
            void recordAccess(HashMap<K,V> m) {
            }
    
            /**
             * This method is invoked whenever the entry is
             * removed from the table.
             */
            void recordRemoval(HashMap<K,V> m) {
            }
        }
    
        /**
         * Adds a new entry with the specified key, value and hash code to
         * the specified bucket.  It is the responsibility of this
         * method to resize the table if appropriate.
         * 用指定的key、value、hash code新增一个新的节点到指定的位置。
         * 如果合适的话,扩容数组是这个方法的责任。
         *
         * Subclass overrides this to alter the behavior of put method.
         * 子类重写这个方法可以改变put方法的行为。
         */
        void addEntry(int hash, K key, V value, int bucketIndex) {
            // jdk7中扩容数组需要两个条件:当前map实际大小 >= 阈值,并且新节点将要插入数组中的位置已经有元素了。
            // 先扩容再插入新节点
            if ((size >= threshold) && (null != table[bucketIndex])) {
                // 数组扩容为之前的两倍,保证始终是2的幂次方
                resize(2 * table.length);
                // 重新计算hash值
                hash = (null != key) ? hash(key) : 0;
                // 重新计算在新数组中的位置
                bucketIndex = indexFor(hash, table.length);
            }
    
            createEntry(hash, key, value, bucketIndex);
        }
    
        /**
         * Like addEntry except that this version is used when creating entries
         * as part of Map construction or "pseudo-construction" (cloning,
         * deserialization).  This version needn't worry about resizing the table.
         * 与 addEntry 类似,只是在创建条目作为 Map 构造或“伪构造”的一部分时使用此版本。
         * 这个版本不需要担心扩容数组。
         *
         * Subclass overrides this to alter the behavior of HashMap(Map),
         * clone, and readObject.
         * 子类重写这个方法去改变HashMap(Map), clone, and readObject 方法的行为。
         */
        void createEntry(int hash, K key, V value, int bucketIndex) {
            // 先获取数组中指定位置的元素(头节点)
            Entry<K,V> e = table[bucketIndex];
            // 采用头插法,创建新节点并将之前的头节点作为next,新节点作为新的头结点放到数组中的指定位置。
            table[bucketIndex] = new Entry<>(hash, key, value, e);
            size++;
        }
    
        private abstract class HashIterator<E> implements Iterator<E> {
            Entry<K,V> next;        // next entry to return
            int expectedModCount;   // For fast-fail
            int index;              // current slot
            Entry<K,V> current;     // current entry
    
            HashIterator() {
                expectedModCount = modCount;
                if (size > 0) { // advance to first entry
                    Entry[] t = table;
                    while (index < t.length && (next = t[index++]) == null)
                        ;
                }
            }
    
            public final boolean hasNext() {
                return next != null;
            }
    
            final Entry<K,V> nextEntry() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                Entry<K,V> e = next;
                if (e == null)
                    throw new NoSuchElementException();
    
                if ((next = e.next) == null) {
                    Entry[] t = table;
                    while (index < t.length && (next = t[index++]) == null)
                        ;
                }
                current = e;
                return e;
            }
    
            public void remove() {
                if (current == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                Object k = current.key;
                current = null;
                HashMap.this.removeEntryForKey(k);
                expectedModCount = modCount;
            }
        }
    
        private final class ValueIterator extends HashIterator<V> {
            public V next() {
                return nextEntry().value;
            }
        }
    
        private final class KeyIterator extends HashIterator<K> {
            public K next() {
                return nextEntry().getKey();
            }
        }
    
        private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
            public Map.Entry<K,V> next() {
                return nextEntry();
            }
        }
    
        // Subclass overrides these to alter behavior of views' iterator() method
        Iterator<K> newKeyIterator()   {
            return new KeyIterator();
        }
        Iterator<V> newValueIterator()   {
            return new ValueIterator();
        }
        Iterator<Map.Entry<K,V>> newEntryIterator()   {
            return new EntryIterator();
        }
    
    
        // Views
    
        private transient Set<Map.Entry<K,V>> entrySet = null;
    
        /**
         * Returns a {@link Set} view of the keys contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa.  If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation), the results of
         * the iteration are undefined.  The set supports element removal,
         * which removes the corresponding mapping from the map, via the
         * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
         * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
         * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
         * operations.
         */
        public Set<K> keySet() {
            Set<K> ks = keySet;
            return (ks != null ? ks : (keySet = new KeySet()));
        }
    
        private final class KeySet extends AbstractSet<K> {
            public Iterator<K> iterator() {
                return newKeyIterator();
            }
            public int size() {
                return size;
            }
            public boolean contains(Object o) {
                return containsKey(o);
            }
            public boolean remove(Object o) {
                return HashMap.this.removeEntryForKey(o) != null;
            }
            public void clear() {
                HashMap.this.clear();
            }
        }
    
        /**
         * Returns a {@link Collection} view of the values contained in this map.
         * The collection is backed by the map, so changes to the map are
         * reflected in the collection, and vice-versa.  If the map is
         * modified while an iteration over the collection is in progress
         * (except through the iterator's own <tt>remove</tt> operation),
         * the results of the iteration are undefined.  The collection
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
         * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
         * support the <tt>add</tt> or <tt>addAll</tt> operations.
         */
        public Collection<V> values() {
            Collection<V> vs = values;
            return (vs != null ? vs : (values = new Values()));
        }
    
        private final class Values extends AbstractCollection<V> {
            public Iterator<V> iterator() {
                return newValueIterator();
            }
            public int size() {
                return size;
            }
            public boolean contains(Object o) {
                return containsValue(o);
            }
            public void clear() {
                HashMap.this.clear();
            }
        }
    
        /**
         * Returns a {@link Set} view of the mappings contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa.  If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation, or through the
         * <tt>setValue</tt> operation on a map entry returned by the
         * iterator) the results of the iteration are undefined.  The set
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
         * <tt>clear</tt> operations.  It does not support the
         * <tt>add</tt> or <tt>addAll</tt> operations.
         *
         * @return a set view of the mappings contained in this map
         */
        public Set<Map.Entry<K,V>> entrySet() {
            return entrySet0();
        }
    
        private Set<Map.Entry<K,V>> entrySet0() {
            Set<Map.Entry<K,V>> es = entrySet;
            return es != null ? es : (entrySet = new EntrySet());
        }
    
        private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
            public Iterator<Map.Entry<K,V>> iterator() {
                return newEntryIterator();
            }
            public boolean contains(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<K,V> e = (Map.Entry<K,V>) o;
                Entry<K,V> candidate = getEntry(e.getKey());
                return candidate != null && candidate.equals(e);
            }
            public boolean remove(Object o) {
                return removeMapping(o) != null;
            }
            public int size() {
                return size;
            }
            public void clear() {
                HashMap.this.clear();
            }
        }
    
        /**
         * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
         * serialize it).
         *
         * @serialData The <i>capacity</i> of the HashMap (the length of the
         *             bucket array) is emitted (int), followed by the
         *             <i>size</i> (an int, the number of key-value
         *             mappings), followed by the key (Object) and value (Object)
         *             for each key-value mapping.  The key-value mappings are
         *             emitted in no particular order.
         */
        private void writeObject(java.io.ObjectOutputStream s)
            throws IOException
        {
            // Write out the threshold, loadfactor, and any hidden stuff
            s.defaultWriteObject();
    
            // Write out number of buckets
            if (table==EMPTY_TABLE) {
                s.writeInt(roundUpToPowerOf2(threshold));
            } else {
               s.writeInt(table.length);
            }
    
            // Write out size (number of Mappings)
            s.writeInt(size);
    
            // Write out keys and values (alternating)
            if (size > 0) {
                for(Map.Entry<K,V> e : entrySet0()) {
                    s.writeObject(e.getKey());
                    s.writeObject(e.getValue());
                }
            }
        }
    
        private static final long serialVersionUID = 362498820763181265L;
    
        /**
         * Reconstitute the {@code HashMap} instance from a stream (i.e.,
         * deserialize it).
         */
        private void readObject(java.io.ObjectInputStream s)
             throws IOException, ClassNotFoundException
        {
            // Read in the threshold (ignored), loadfactor, and any hidden stuff
            s.defaultReadObject();
            if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
                throw new InvalidObjectException("Illegal load factor: " +
                                                   loadFactor);
            }
    
            // set other fields that need values
            table = (Entry<K,V>[]) EMPTY_TABLE;
    
            // Read in number of buckets
            s.readInt(); // ignored.
    
            // Read number of mappings
            int mappings = s.readInt();
            if (mappings < 0)
                throw new InvalidObjectException("Illegal mappings count: " +
                                                   mappings);
    
            // capacity chosen by number of mappings and desired load (if >= 0.25)
            int capacity = (int) Math.min(
                        mappings * Math.min(1 / loadFactor, 4.0f),
                        // we have limits...
                        HashMap.MAXIMUM_CAPACITY);
    
            // allocate the bucket array;
            if (mappings > 0) {
                inflateTable(capacity);
            } else {
                threshold = capacity;
            }
    
            init();  // Give subclass a chance to do its thing.
    
            // Read the keys and values, and put the mappings in the HashMap
            for (int i = 0; i < mappings; i++) {
                K key = (K) s.readObject();
                V value = (V) s.readObject();
                putForCreate(key, value);
            }
        }
    
        // These methods are used when serializing HashSets
        int   capacity()     { return table.length; }
        float loadFactor()   { return loadFactor;   }
    }
    

    Integer.highestOneBit(int i)方法

        /**
         * Returns an {@code int} value with at most a single one-bit, in the
         * position of the highest-order ("leftmost") one-bit in the specified
         * {@code int} value.  Returns zero if the specified value has no
         * one-bits in its two's complement binary representation, that is, if it
         * is equal to zero.
         *
         * @return an {@code int} value with a single one-bit, in the position
         *     of the highest-order one-bit in the specified value, or zero if
         *     the specified value is itself equal to zero.
         * @since 1.5
         * 
         * 返回小于等于i的最大的2的幂次方,
         * Integer.highestOneBit(15) -> 8
         * Integer.highestOneBit(16) -> 16
         * Integer.highestOneBit(17) -> 16
         */
        public static int highestOneBit(int i) {
            // HD, Figure 3-1
            i |= (i >>  1);
            i |= (i >>  2);
            i |= (i >>  4);
            i |= (i >>  8);
            i |= (i >> 16);
            return i - (i >>> 1);
        }
    

    相关文章

      网友评论

        本文标题:HashMap源码解析(jdk1.7)

        本文链接:https://www.haomeiwen.com/subject/vyvnurtx.html