美文网首页
数据结构-HashMap

数据结构-HashMap

作者: 半个橙子 | 来源:发表于2018-11-16 22:21 被阅读0次

    HashMap

    HashMap是一个散列链表,用一个Entry数组存储所有的数据。Entry中有一个next引用,也就说Entry数组就是一个个单链表。put方法首先根据key计算hashCode,根据数组长度取模或者异或运算得到对应数组的下标,当hash值相同或者计算得到的下标相同时则往单链表追加数据。为了让数据均匀分布在每一条链上,数据量达到最大容量的0.75时就会扩容并重新计算每一个元素的hash,然后添加到新的数组中。

    image.png

    核心方法

    public V put(K key, V value) {
            //计算hash值
            return putVal(hash(key), key, value, false, true);
        }
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
            //计算数组索引
            if ((p = tab[i = (n - 1) & hash]) == null)
                //该索引位置的元素为null则直接添加
                tab[i] = newNode(hash, key, value, null);
            else {
                Node<K,V> e; K k;
                //查找是否已存在key相同的元素
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                else {
                    for (int binCount = 0; ; ++binCount) {
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                if (e != null) { // existing mapping for key
                    //已存在相同key的元素则直接修改该值
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    //访问回调
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
            //扩容
            if (++size > threshold)
                resize();
            //插入回调
            afterNodeInsertion(evict);
            return null;
        }
    

    LinkedHashMap

    LinkedHashMap 继承HashMap 他包含上面提到的HashMap的存储结构,而且它的Entry元素除了维护next引用,还会维护 before after引用形成双向链表。也就是套用Hashmap同时维护了一个单链表一个双向链表而且两者互不影响。


    image.png
        static class Entry<K,V> extends HashMap.Node<K,V> {
            Entry<K,V> before, after;
            Entry(int hash, K key, V value, Node<K,V> next) {
                super(hash, key, value, next);
            }
        }
    //调用put方法时回调此方法,维护双向链表的关系
        Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
            LinkedHashMap.Entry<K,V> p =
                new LinkedHashMap.Entry<K,V>(hash, key, value, e);
            linkNodeLast(p);
            return p;
        }
        private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
            LinkedHashMap.Entry<K,V> last = tail;
            tail = p;
            if (last == null)
                head = p;
            else {
                p.before = last;
                last.after = p;
            }
        }
    

    Lru

    一般使用LinkedHashMap可以实现Lru算法。

    基于访问排序:每次使用get等访问一个元素就将该元素放到队尾,插入元素后如果removeEldestEntry(first)返回true则删除队头元素
    基于插入排序:总是队尾入队,子类复写removeEldestEntry(first)并做自己的逻辑判断返回true的时候会删除队头元素

    //java.util.LinkedHashMap
    //插入元素后父类HashMap会回调此方法
    void afterNodeInsertion(boolean evict) { // possibly remove eldest
            LinkedHashMap.Entry<K,V> first;
            if (evict && (first = head) != null && removeEldestEntry(first)) {
                K key = first.key;
                //调用父类删除元素的方法
                removeNode(hash(key), key, null, false, true);
            }
        }
    //访问元素后HashMap会回调此方法 将访问的元素放到双向链表的队尾
        void afterNodeAccess(Node<K,V> e) { // move node to last
            LinkedHashMap.Entry<K,V> last;
            if (accessOrder && (last = tail) != e) {
                LinkedHashMap.Entry<K,V> p =
                    (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
                p.after = null;
                if (b == null)
                    head = a;
                else
                    b.after = a;
                if (a != null)
                    a.before = b;
                else
                    last = b;
                if (last == null)
                    head = p;
                else {
                    p.before = last;
                    last.after = p;
                }
                tail = p;
                ++modCount;
            }
        }
    

    LruCache 示例

    //org.apache.ibatis.cache.decorators.LruCache
    public class LruCache implements Cache {
        private final Cache delegate;
        private Map<Object, Object> keyMap;
        private Object eldestKey;
    
        public LruCache(Cache delegate) {
            this.delegate = delegate;
            this.setSize(1024);
        }
    
        public String getId() {
            return this.delegate.getId();
        }
    
        public int getSize() {
            return this.delegate.getSize();
        }
    
        public void setSize(final int size) {
            this.keyMap = new LinkedHashMap<Object, Object>(size, 0.75F, true) {
                private static final long serialVersionUID = 4267176411845948333L;
    
                protected boolean removeEldestEntry(Entry<Object, Object> eldest) {
                    boolean tooBig = this.size() > size;
                    if (tooBig) {
                        LruCache.this.eldestKey = eldest.getKey();
                    }
    
                    return tooBig;
                }
            };
        }
    }
    

    手写一个HashMap

    这个例子实现了HashMap最基本的功能,忽略了自动扩容的部分代码

    package com.execlib;
    public class MyHashMap<K,V> {
        private Entry<K,V>[] ele;
        private int size;
        public MyHashMap(){
            init();
        }
        private void init(){
            ele = new Entry[20];
        }
        public V put(K key,V value){
            int hashCode = key.hashCode();
            int index = hashCode&(ele.length-1);
            Entry<K,V> e = null;
            for (e = ele[index];e!=null;e = e.next){
                if (e.hash == key.hashCode()&&e.key.equals(key)){
                    V oldValue = e.value;
                    e.value = value;
                    return oldValue;
                }
            }
            size++;
            addNewEntry(index,key,value,hashCode);
            return value;
        }
        public void addNewEntry(int index,K key,V value,int hashCode){
            ele[index] = new Entry<K, V>(key,value,ele[index],hashCode);
        }
        public V get(K key){
            int hashCode = key.hashCode();
            int index = hashCode&(ele.length-1);
            Entry<K,V> e = null;
            for (e = ele[index];e!=null;e = e.next){
                if (e.hash == key.hashCode()&&e.key.equals(key)){
                    return e.value;
                }
            }
            return null;
        }
        public V remove(K key){
            int hashCode = key.hashCode();
            int index = hashCode&(ele.length-1);
            Entry<K,V> e = null;
            Entry<K,V> pre = null;
            for (e = ele[index];e!=null;pre = e,e = e.next){
                if (e.hash == key.hashCode()&&e.key.equals(key)){
                    if (pre==null){
                        ele[index] = null;
                    }else {
                        pre.next = e.next;
                    }
                    size--;
                }
            }
            if (e == null)
                return null;
            return e.value;
        }
    
        public int getSize() {
            return size;
        }
    
        public class Entry<K,V>{
            public Entry(K key, V value, Entry next, int hash) {
                this.key = key;
                this.value = value;
                this.next = next;
                this.hash = hash;
            }
    
            private K key;
            private V value;
            private Entry next;
            private int hash;
        }
    }
    

    测试代码

    package com.execlib;
    public class TestMyHashMap {
        public static void main(String[] args) {
            MyHashMap<Integer, Integer> myHashMap = new MyHashMap<Integer, Integer>();
            for (int i = 0; i < 1000; i++) {
                myHashMap.put(i,i);
            }
            for (int i = 0; i < 10022; i++) {
                myHashMap.get(i);
                myHashMap.remove(i);
            }
            System.out.println(myHashMap.getSize());
        }
    }
    
    image.png

    参考HashMap中capacity、loadFactor、threshold、size等概念的解释

    相关文章

      网友评论

          本文标题:数据结构-HashMap

          本文链接:https://www.haomeiwen.com/subject/vzdvfqtx.html