美文网首页
mnist简单的神经网络

mnist简单的神经网络

作者: 我要当大佬 | 来源:发表于2017-11-07 11:21 被阅读0次

    #载入数据集

    mnist = input_data.read_data_sets(r"E:\anaconda\tensorflow\tensor_mnist-master\MNIST_data",one_hot=True)

    #每个批次的大小

    batch_size = 100

    #计算一共有多少个批次

    n_batch=mnist.train.num_examples//batch_size

    x = tf.placeholder(tf.float32,[None,784])

    y = tf.placeholder(tf.float32,[None,10])

    #创建一个神经网络

    W = tf.Variable(tf.zeros([784,10]))

    b = tf.Variable(tf.zeros([10]))

    prediction = tf.nn.softmax(tf.matmul(x,W)+b)

    loss = tf.reduce_mean(tf.square(y-prediction))

    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

    #一个bool类型的列表

    correct_rediction = tf.equal(tf.arg_max(y,1),tf.arg_max(prediction,1))#arg_max会返回一个张量中最大值所在位置

    #cast将bool转化为float型,true为1,false为0

    accuracy = tf.reduce_mean(tf.cast(correct_rediction,tf.float32))

    with tf.Session() as sess:

    sess.run(tf.global_variables_initializer())

    for epoch in range(21):

    for batch in range(n_batch):

    batch_xs,batch_ys = mnist.train.next_batch(batch_size)

    sess.run(train_step, feed_dict={x:batch_xs,y:batch_ys})

    acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})

    print ('Iter'+str(epoch)+'.Testing Accuracy'+str(acc))

    ————————————————————————————————————————————

    稍微复杂一点的代码:

    #载入数据集

    mnist = input_data.read_data_sets(r"E:\anaconda\tensorflow\tensor_mnist-master\MNIST_data",one_hot=True)

    #每个批次的大小

    batch_size = 100

    #计算一共有多少个批次

    n_batch=mnist.train.num_examples//batch_size

    x = tf.placeholder(tf.float32,[None,784])

    y = tf.placeholder(tf.float32,[None,10])

    keep_prob = tf.placeholder(tf.float32)

    Ir = tf.Variable(0.001,dtype=tf.float32) #学习率

    #创建一个神经网络

    W1 = tf.Variable(tf.truncated_normal([784,500],stddev=0.1))

    b1 = tf.Variable(tf.zeros([500])+0.1)

    L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)

    L1_drop = tf.nn.dropout(L1,keep_prob)

    W2 = tf.Variable(tf.truncated_normal([500,300],stddev=0.1))

    b2 = tf.Variable(tf.zeros([300])+0.1)

    L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)

    L2_drop = tf.nn.dropout(L2,keep_prob)

    W3 = tf.Variable(tf.truncated_normal([300,10],stddev=0.1))

    #tf.truncated_normal(shape, mean, stddev) :shape表示生成张量的维度,mean是均值,stddev是标准差。

    b3 = tf.Variable(tf.zeros([10])+0.1)

    prediction = tf.nn.softmax(tf.matmul(L2_drop,W3)+b3)

    #交叉熵代价函数

    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))

    train_step = tf.train.AdamOptimizer(Ir).minimize(loss)

    #一个bool类型的列表

    correct_rediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#arg_max会返回一个张量中最大值所在位置

    #cast将bool转化为float型,true为1,false为0

    accuracy = tf.reduce_mean(tf.cast(correct_rediction,tf.float32))

    with tf.Session() as sess:

    sess.run(tf.global_variables_initializer())

    for epoch in range(51):

    sess.run(tf.assign(Ir,0.001*(0.95**epoch)))

    for batch in range(n_batch):

    batch_xs,batch_ys = mnist.train.next_batch(batch_size)

    sess.run(train_step, feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})

    learning_rate = sess.run(Ir)

    acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})

    print ('Iter'+str(epoch)+'.Testing Accuracy'+str(acc)+'.learning rate'+str(learning_rate))

    相关文章

      网友评论

          本文标题:mnist简单的神经网络

          本文链接:https://www.haomeiwen.com/subject/vzwdmxtx.html