#载入数据集
mnist = input_data.read_data_sets(r"E:\anaconda\tensorflow\tensor_mnist-master\MNIST_data",one_hot=True)
#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
#创建一个神经网络
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)
loss = tf.reduce_mean(tf.square(y-prediction))
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#一个bool类型的列表
correct_rediction = tf.equal(tf.arg_max(y,1),tf.arg_max(prediction,1))#arg_max会返回一个张量中最大值所在位置
#cast将bool转化为float型,true为1,false为0
accuracy = tf.reduce_mean(tf.cast(correct_rediction,tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(21):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print ('Iter'+str(epoch)+'.Testing Accuracy'+str(acc))
————————————————————————————————————————————
稍微复杂一点的代码:
#载入数据集
mnist = input_data.read_data_sets(r"E:\anaconda\tensorflow\tensor_mnist-master\MNIST_data",one_hot=True)
#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
Ir = tf.Variable(0.001,dtype=tf.float32) #学习率
#创建一个神经网络
W1 = tf.Variable(tf.truncated_normal([784,500],stddev=0.1))
b1 = tf.Variable(tf.zeros([500])+0.1)
L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop = tf.nn.dropout(L1,keep_prob)
W2 = tf.Variable(tf.truncated_normal([500,300],stddev=0.1))
b2 = tf.Variable(tf.zeros([300])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop = tf.nn.dropout(L2,keep_prob)
W3 = tf.Variable(tf.truncated_normal([300,10],stddev=0.1))
#tf.truncated_normal(shape, mean, stddev) :shape表示生成张量的维度,mean是均值,stddev是标准差。
b3 = tf.Variable(tf.zeros([10])+0.1)
prediction = tf.nn.softmax(tf.matmul(L2_drop,W3)+b3)
#交叉熵代价函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
train_step = tf.train.AdamOptimizer(Ir).minimize(loss)
#一个bool类型的列表
correct_rediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#arg_max会返回一个张量中最大值所在位置
#cast将bool转化为float型,true为1,false为0
accuracy = tf.reduce_mean(tf.cast(correct_rediction,tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(51):
sess.run(tf.assign(Ir,0.001*(0.95**epoch)))
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
learning_rate = sess.run(Ir)
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
print ('Iter'+str(epoch)+'.Testing Accuracy'+str(acc)+'.learning rate'+str(learning_rate))
网友评论