美文网首页Python从0到1我爱编程
(2018-05-23.Python从Zero到One)7、(爬

(2018-05-23.Python从Zero到One)7、(爬

作者: lyh165 | 来源:发表于2018-05-23 23:33 被阅读0次

    将已有的新浪网分类资讯Scrapy爬虫项目,修改为基于RedisSpider类的scrapy-redis分布式爬虫项目

    注:items数据直接存储在Redis数据库中,这个功能已经由scrapy-redis自行实现。除非单独做额外处理(比如直接存入本地数据库等),否则不用编写pipelines.py代码。

    items.py文件

    # items.py
    
    # -*- coding: utf-8 -*-
    
    import scrapy
    
    import sys
    reload(sys)
    sys.setdefaultencoding("utf-8")
    
    class SinaItem(scrapy.Item):
        # 大类的标题 和 url
        parentTitle = scrapy.Field()
        parentUrls = scrapy.Field()
    
        # 小类的标题 和 子url
        subTitle = scrapy.Field()
        subUrls = scrapy.Field()
    
        # 小类目录存储路径
        # subFilename = scrapy.Field()
    
        # 小类下的子链接
        sonUrls = scrapy.Field()
    
        # 文章标题和内容
        head = scrapy.Field()
        content = scrapy.Field()
    

    settings.py文件

    
    SPIDER_MODULES = ['Sina.spiders']
    NEWSPIDER_MODULE = 'Sina.spiders'
    
    USER_AGENT = 'scrapy-redis (+https://github.com/rolando/scrapy-redis)'
    
    DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
    SCHEDULER = "scrapy_redis.scheduler.Scheduler"
    SCHEDULER_PERSIST = True
    SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue"
    #SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue"
    #SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack"
    
    ITEM_PIPELINES = {
    #    'Sina.pipelines.SinaPipeline': 300,
        'scrapy_redis.pipelines.RedisPipeline': 400,
    }
    
    LOG_LEVEL = 'DEBUG'
    
    # Introduce an artifical delay to make use of parallelism. to speed up the
    # crawl.
    DOWNLOAD_DELAY = 1
    
    REDIS_HOST = "192.168.13.26"
    REDIS_PORT = 6379
    

    spiders/sina.py

    # sina.py
    
    # -*- coding: utf-8 -*-
    
    from Sina.items import SinaItem
    from scrapy_redis.spiders import RedisSpider
    #from scrapy.spiders import Spider
    import scrapy
    
    import sys
    reload(sys)
    sys.setdefaultencoding("utf-8")
    
    #class SinaSpider(Spider):
    class SinaSpider(RedisSpider):
        name= "sina"
        redis_key = "sinaspider:start_urls"
        #allowed_domains= ["sina.com.cn"]
        #start_urls= [
        #   "http://news.sina.com.cn/guide/"
        #]#起始urls列表
    
        def __init__(self, *args, **kwargs):
            domain = kwargs.pop('domain', '')
            self.allowed_domains = filter(None, domain.split(','))
            super(SinaSpider, self).__init__(*args, **kwargs)
    
    
        def parse(self, response):
            items= []
    
            # 所有大类的url 和 标题
            parentUrls = response.xpath('//div[@id=\"tab01\"]/div/h3/a/@href').extract()
            parentTitle = response.xpath("//div[@id=\"tab01\"]/div/h3/a/text()").extract()
    
            # 所有小类的ur 和 标题
            subUrls  = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/@href').extract()
            subTitle = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/text()').extract()
    
            #爬取所有大类
            for i in range(0, len(parentTitle)):
    
                # 指定大类的路径和目录名
                #parentFilename = "./Data/" + parentTitle[i]
    
                #如果目录不存在,则创建目录
                #if(not os.path.exists(parentFilename)):
                #    os.makedirs(parentFilename)
    
                # 爬取所有小类
                for j in range(0, len(subUrls)):
                    item = SinaItem()
    
                    # 保存大类的title和urls
                    item['parentTitle'] = parentTitle[i]
                    item['parentUrls'] = parentUrls[i]
    
                    # 检查小类的url是否以同类别大类url开头,如果是返回True (sports.sina.com.cn 和 sports.sina.com.cn/nba)
                    if_belong = subUrls[j].startswith(item['parentUrls'])
    
                    # 如果属于本大类,将存储目录放在本大类目录下
                    if(if_belong):
                        #subFilename =parentFilename + '/'+ subTitle[j]
    
                        # 如果目录不存在,则创建目录
                        #if(not os.path.exists(subFilename)):
                        #    os.makedirs(subFilename)
    
                        # 存储 小类url、title和filename字段数据
                        item['subUrls'] = subUrls[j]
                        item['subTitle'] =subTitle[j]
                        #item['subFilename'] = subFilename
    
                        items.append(item)
    
            #发送每个小类url的Request请求,得到Response连同包含meta数据 一同交给回调函数 second_parse 方法处理
            for item in items:
                yield scrapy.Request( url = item['subUrls'], meta={'meta_1': item}, callback=self.second_parse)
    
        #对于返回的小类的url,再进行递归请求
        def second_parse(self, response):
            # 提取每次Response的meta数据
            meta_1= response.meta['meta_1']
    
            # 取出小类里所有子链接
            sonUrls = response.xpath('//a/@href').extract()
    
            items= []
            for i in range(0, len(sonUrls)):
                # 检查每个链接是否以大类url开头、以.shtml结尾,如果是返回True
                if_belong = sonUrls[i].endswith('.shtml') and sonUrls[i].startswith(meta_1['parentUrls'])
    
                # 如果属于本大类,获取字段值放在同一个item下便于传输
                if(if_belong):
                    item = SinaItem()
                    item['parentTitle'] =meta_1['parentTitle']
                    item['parentUrls'] =meta_1['parentUrls']
                    item['subUrls'] =meta_1['subUrls']
                    item['subTitle'] =meta_1['subTitle']
                    #item['subFilename'] = meta_1['subFilename']
                    item['sonUrls'] = sonUrls[i]
                    items.append(item)
    
            #发送每个小类下子链接url的Request请求,得到Response后连同包含meta数据 一同交给回调函数 detail_parse 方法处理
            for item in items:
                    yield scrapy.Request(url=item['sonUrls'], meta={'meta_2':item}, callback = self.detail_parse)
    
        # 数据解析方法,获取文章标题和内容
        def detail_parse(self, response):
            item = response.meta['meta_2']
            content = ""
            head = response.xpath('//h1[@id=\"main_title\"]/text()').extract()
            content_list = response.xpath('//div[@id=\"artibody\"]/p/text()').extract()
    
            # 将p标签里的文本内容合并到一起
            for content_one in content_list:
                content += content_one
    
            item['head']= head[0] if len(head) > 0 else "NULL"
    
            item['content']= content
    
            yield item
    

    执行:

    slave端:
    scrapy runspider sina.py
    
    Master端:
    redis-cli> lpush sinaspider:start_urls http://news.sina.com.cn/guide/
    

    相关文章

      网友评论

        本文标题:(2018-05-23.Python从Zero到One)7、(爬

        本文链接:https://www.haomeiwen.com/subject/wazdjftx.html