MNIST - 1

作者: sumpig | 来源:发表于2019-02-10 16:37 被阅读0次

    mnist_inference.py

    import tensorflow as tf
    
    INPUT_NODE = 784
    OUTPUT_NODE = 10
    LAYER1_NODE = 500
    
    def get_weight_variable(shape, regularizer):
        weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None: 
            tf.add_to_collection('losses', regularizer(weights))
        return weights
    
    
    def inference(input_tensor, regularizer):
        with tf.variable_scope('layer1'):
            weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
            biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
            layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
    
        with tf.variable_scope('layer2'):
            weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
            biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
            layer2 = tf.matmul(layer1, weights) + biases
    
        return layer2
    

    mnist_train.py

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import mnist_inference
    import os
    
    BATCH_SIZE = 100
    LEARNING_RATE_BASE = 0.8
    LEARNING_RATE_DECAY = 0.99
    REGULARIZATION_RATE = 0.0001
    TRAINING_STEPS = 30000
    MOVING_AVERAGE_DECAY = 0.99
    MODEL_SAVE_PATH="MNIST_model/"
    MODEL_NAME="mnist_model"
    
    
    def train(mnist):
    
        x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
    
        regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
        y = mnist_inference.inference(x, regularizer)
        global_step = tf.Variable(0, trainable=False)
    
    
        variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
        variables_averages_op = variable_averages.apply(tf.trainable_variables())
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
        cross_entropy_mean = tf.reduce_mean(cross_entropy)
        loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
        learning_rate = tf.train.exponential_decay(
            LEARNING_RATE_BASE,
            global_step,
            mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
            staircase=True)
        train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
        with tf.control_dependencies([train_step, variables_averages_op]):
            train_op = tf.no_op(name='train')
    
    
        saver = tf.train.Saver()
        with tf.Session() as sess:
            tf.global_variables_initializer().run()
    
            for i in range(TRAINING_STEPS):
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
                _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
                if i % 1000 == 0:
                    print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                    saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
    
    
    def main(argv=None):
        mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
        train(mnist)
    
    if __name__ == '__main__':
        tf.app.run()
    
    

    mnist_eval.py

    import time
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import mnist_inference
    import mnist_train
    
    
    EVAL_INTERVAL_SECS = 10
    
    def evaluate(mnist):
        with tf.Graph().as_default() as g:
            x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
            y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
            validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
    
            y = mnist_inference.inference(x, None)
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
            variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
            variables_to_restore = variable_averages.variables_to_restore()
            saver = tf.train.Saver(variables_to_restore)
    
            while True:
                with tf.Session() as sess:
                    ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)
                    if ckpt and ckpt.model_checkpoint_path:
                        saver.restore(sess, ckpt.model_checkpoint_path)
                        global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                        accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
                        print("After %s training step(s), validation accuracy = %g" % (global_step, accuracy_score))
                    else:
                        print('No checkpoint file found')
                        return
                time.sleep(EVAL_INTERVAL_SECS)
    
    
    def main(argv=None):
        mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
        evaluate(mnist)
    
    if __name__ == '__main__':
        main()
    

    相关文章

      网友评论

          本文标题:MNIST - 1

          本文链接:https://www.haomeiwen.com/subject/wbkxeqtx.html