美文网首页R语言小技能生物信息学与算法数据科学与R语言
【r<-基础|流程|方案】数据处理难题的一套解决方案

【r<-基础|流程|方案】数据处理难题的一套解决方案

作者: 王诗翔 | 来源:发表于2017-03-21 16:55 被阅读75次

    我们来解决这样一个问题:将学生的各科考试成绩组合为单一的成绩衡量制表,基于相对名次给出从A到F的评分,根据学生姓氏和名称的首字母对花名册进行排序。

    # 数据输入
    > options(digits=2)  # 限制输出小数点后数字的位数
    > Student <- c("John Davis", "Angela Williams", "Bullwinkle Moose", "David Jones", "Janice Markhammer", "Cheryl Cushing", "Reuven Ytzrhak", "Greg Knox", "Joel England", "Mary Rayburn")
    > Math <- c(502, 600, 412, 358,  495, 512, 410, 625, 573, 532)
    > Science <- c(95, 99, 80, 82, 75, 85, 80, 95, 89, 86)
    > English <- c(25, 22, 18, 15, 20, 28, 15, 30, 27, 18)
    > roster <- data.frame(Student, Math, Science, English, stringsAsFactors = FALSE)
    > roster
                 Student Math Science English
    1         John Davis  502      95      25
    2    Angela Williams  600      99      22
    3   Bullwinkle Moose  412      80      18
    4        David Jones  358      82      15
    5  Janice Markhammer  495      75      20
    6     Cheryl Cushing  512      85      28
    7     Reuven Ytzrhak  410      80      15
    8          Greg Knox  625      95      30
    9       Joel England  573      89      27
    10      Mary Rayburn  532      86      18
    
    # 将各科成绩标准化(用单位标准差表示),用scale()函数实现
    > z <- scale(roster[, 2:4])
    > z
             Math Science English
     [1,]  0.0011   1.078   0.587
     [2,]  1.1276   1.591   0.037
     [3,] -1.0333  -0.847  -0.697
     [4,] -1.6540  -0.590  -1.247
     [5,] -0.0793  -1.489  -0.330
     [6,]  0.1161  -0.205   1.137
     [7,] -1.0563  -0.847  -1.247
     [8,]  1.4149   1.078   1.504
     [9,]  0.8172   0.308   0.954
    [10,]  0.3460  -0.077  -0.697
    attr(,"scaled:center")
       Math Science English 
        502      87      22 
    attr(,"scaled:scale")
       Math Science English 
       87.0     7.8     5.5 
    
    # 求各行的均值以获得综合得分
    > score <- apply(z, 1, mean)
    > roster <- cbind(roster, score)
    > roster
                 Student Math Science English score
    1         John Davis  502      95      25  0.56
    2    Angela Williams  600      99      22  0.92
    3   Bullwinkle Moose  412      80      18 -0.86
    4        David Jones  358      82      15 -1.16
    5  Janice Markhammer  495      75      20 -0.63
    6     Cheryl Cushing  512      85      28  0.35
    7     Reuven Ytzrhak  410      80      15 -1.05
    8          Greg Knox  625      95      30  1.33
    9       Joel England  573      89      27  0.69
    10      Mary Rayburn  532      86      18 -0.14
    
    # 用quantile()函数计算学生综合得分的百分位数
    > y <- quantile(roster$score, c(.8,.6,.4,.2))
    > y
      80%   60%   40%   20% 
     0.74  0.43 -0.34 -0.90 
    
    # 按照百分位数排名重编码成绩
    > roster$grade[score >= y[1]] <- 'A'
    > roster$grade[score < y[1] & score >= y[2]] <- 'B'
    > roster$grade[score < y[2] & score >= y[3]] <- 'C'
    > roster$grade[score < y[3] & score >= y[4]] <- 'D'
    
    > roster$grade[score < y[4] ]<- 'F'
    > roster
                 Student Math Science English score grade
    1         John Davis  502      95      25  0.56     B
    2    Angela Williams  600      99      22  0.92     A
    3   Bullwinkle Moose  412      80      18 -0.86     D
    4        David Jones  358      82      15 -1.16     F
    5  Janice Markhammer  495      75      20 -0.63     D
    6     Cheryl Cushing  512      85      28  0.35     C
    7     Reuven Ytzrhak  410      80      15 -1.05     F
    8          Greg Knox  625      95      30  1.33     A
    9       Joel England  573      89      27  0.69     B
    10      Mary Rayburn  532      86      18 -0.14     C
    
    
    # 以空格为界将姓名拆分
    > name <- strsplit((roster$Student), " ")
    > name
    [[1]]
    [1] "John"  "Davis"
    
    [[2]]
    [1] "Angela"   "Williams"
    
    [[3]]
    [1] "Bullwinkle" "Moose"     
    
    [[4]]
    [1] "David" "Jones"
    
    [[5]]
    [1] "Janice"     "Markhammer"
    
    [[6]]
    [1] "Cheryl"  "Cushing"
    
    [[7]]
    [1] "Reuven"  "Ytzrhak"
    
    [[8]]
    [1] "Greg" "Knox"
    
    [[9]]
    [1] "Joel"    "England"
    
    [[10]]
    [1] "Mary"    "Rayburn"
    
    # 分别将姓名存储,并去掉无用的student列。"["是一个可以用来提取某个对象的一部分的函数
    > Firstname <- sapply(name, "[", 1)
    > Lastname <- sapply(name, "[", 2)
    > roster <- cbind(Firstname, Lastname, roster[, -1])
    > roster
        Firstname   Lastname Math Science English score grade
    1        John      Davis  502      95      25  0.56     B
    2      Angela   Williams  600      99      22  0.92     A
    3  Bullwinkle      Moose  412      80      18 -0.86     D
    4       David      Jones  358      82      15 -1.16     F
    5      Janice Markhammer  495      75      20 -0.63     D
    6      Cheryl    Cushing  512      85      28  0.35     C
    7      Reuven    Ytzrhak  410      80      15 -1.05     F
    8        Greg       Knox  625      95      30  1.33     A
    9        Joel    England  573      89      27  0.69     B
    10       Mary    Rayburn  532      86      18 -0.14     C
    
    # 用order()函数进行排序
    > roster[order(Lastname, Firstname), ]
        Firstname   Lastname Math Science English score grade
    6      Cheryl    Cushing  512      85      28  0.35     C
    1        John      Davis  502      95      25  0.56     B
    9        Joel    England  573      89      27  0.69     B
    4       David      Jones  358      82      15 -1.16     F
    8        Greg       Knox  625      95      30  1.33     A
    5      Janice Markhammer  495      75      20 -0.63     D
    3  Bullwinkle      Moose  412      80      18 -0.86     D
    10       Mary    Rayburn  532      86      18 -0.14     C
    2      Angela   Williams  600      99      22  0.92     A
    7      Reuven    Ytzrhak  410      80      15 -1.05     F
    

    将一个函数应用到矩阵的所有行列

    > mydata <- matrix(rnorm(30), nrow=6)
    > mydata
                [,1]       [,2]       [,3]       [,4]       [,5]
    [1,] -0.06125496  0.4988079 -0.2929864 -0.4886596 -1.0619015
    [2,]  0.25143001  0.3055695  0.2592611  1.7845242  1.0919724
    [3,]  0.69396311  0.5974815 -0.7969848 -0.0540765 -0.9713497
    [4,]  0.12294368  1.0399471  2.2633374  0.3299851  0.3274629
    [5,]  1.36734800 -0.4483960 -0.5536991 -0.7941322  0.2633292
    [6,]  0.13667905  1.7121611  0.7215101  2.0211705  1.8452035
    > apply(mydata, 1, mean) # 1 means row
    [1] -0.28119891  0.73855144 -0.10619327  0.81673523 -0.03311001
    [6]  1.28734486
    > apply(mydata, 2, mean) # 2 means col
    [1] 0.4185181 0.6175952 0.2667397 0.4664686 0.2491194
    

    相关文章

      网友评论

        本文标题:【r<-基础|流程|方案】数据处理难题的一套解决方案

        本文链接:https://www.haomeiwen.com/subject/wcugnttx.html