美文网首页
2020-02-14 Kitaev model on a hex

2020-02-14 Kitaev model on a hex

作者: 低维量子系统 | 来源:发表于2020-02-14 23:00 被阅读0次

Kitaev model on the hexagonal lattice

这两天摈弃了所有杂念,踏踏实实学习Kitaev model。找到的一篇能够follow的文献是Chen在2008年发表的论文。


  • 标题:Exact results of the Kitaev model on a hexagonal lattice: spin states, string and brane correlators, and anyonic excitations
  • 作者:Han-Dong Chen and Zohar Nussinov
  • 全文链接:论文

  • 笔记的目的
    • 日后关于Jordan-Wigner变换,Wick定理,傅立叶变换等,可以在这里温习。
    • 如果日后恰好有人学到这篇文献,希望这篇笔记能够帮到他(她)。
Hamiltonian

H=-J_x\sum_{x-links}\sigma_j^x\sigma_k^x-J_y\sum_{y-links}\sigma_j^y\sigma_k^y-J_z\sum_{z-links}\sigma_j^z\sigma_k^z

pauli operators
  • \sigma^x=[0,1;1,0]

    \sigma^y=[0,-i;i,0]

    \sigma^z=[1,0;0,-1]

  • \sigma_x^2=\sigma_y^2=\sigma_z^2=I

  • \sigma_x\sigma_y\sigma_z=I

    \sigma_y\sigma_z\sigma_x=I

    \sigma_z\sigma_x\sigma_y=I

  • \sigma_z\sigma_y\sigma_x=-i

    \sigma_y\sigma_x\sigma_z=-i

    \sigma_x\sigma_z\sigma_y=-i

fermion operators

\{a^{\dagger}_j,a_j\}=1

\{a^{\dagger}_j,a_k\}=0

\{a_j,a_k\}=0

\{a^{\dagger}_j,a^{\dagger}_k\}=0

a_j^2=0

{a^{\dagger2}_j}=0

Jordan-Wigner transformation from spin operators to fermion operators
  • \sigma^x_{\ell}=[\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot(c^{\dagger}_{\ell}+c_{\ell})

    \sigma^y_{\ell}=-i\cdot[\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot(c^{\dagger}_{\ell}-c_{\ell})

    \sigma^z_{\ell}=2c^{\dagger}_{\ell}c_{\ell}-1

  • communication relations

    [\sigma^z_{\ell},c^{\dagger}_j]

    =[2c^{\dagger}_{\ell}c_{\ell}-1,c^{\dagger}_j]

    =(2c^{\dagger}_{\ell}c_{\ell}-1)\cdot c^{\dagger}_j - c^{\dagger}_j \cdot (2c^{\dagger}_{\ell}c_{\ell}-1)

    =(2c^{\dagger}_{\ell}c_{\ell}\cdot c^{\dagger}_j- c^{\dagger}_j) - (2 c^{\dagger}_j \cdot c^{\dagger}_{\ell}c_{\ell}-c^{\dagger}_j )

    =2c^{\dagger}_{\ell}c_{\ell}\cdot c^{\dagger}_j - 2 c^{\dagger}_j \cdot c^{\dagger}_{\ell}c_{\ell}

    =0

    [\sigma^z_{\ell},c^{\dagger}_{\ell}]

    =[2c^{\dagger}_{\ell}c_{\ell}-1,c^{\dagger}_{\ell}]

    =(2c^{\dagger}_{\ell}c_{\ell}-1)\cdot c^{\dagger}_{\ell} - c^{\dagger}_{\ell} \cdot (2c^{\dagger}_{\ell}c_{\ell}-1)

    =(2c^{\dagger}_{\ell}c_{\ell}\cdot c^{\dagger}_{\ell}- c^{\dagger}_{\ell}) - (2 c^{\dagger}_{\ell} \cdot c^{\dagger}_{\ell}c_{\ell}-c^{\dagger}_{\ell} )

    =2c^{\dagger}_{\ell}c_{\ell}\cdot c^{\dagger}_{\ell}

    =2c^{\dagger}_{\ell}\cdot (1-c^{\dagger}_{\ell} c_{\ell})

    =2c^{\dagger}_{\ell}

  • Jordan-Wigner transformation for \sigma^x_{\ell}\sigma^x_{\ell+1}

    \sigma^x_{\ell}\sigma^x_{\ell+1}

    =[\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot(c^{\dagger}_{\ell}+c_{\ell}) \cdot [\Pi_{m=1...\ell}\sigma^z_m ] \cdot(c^{\dagger}_{\ell+1}+c_{\ell+1})

    =(c^{\dagger}_{\ell}+c_{\ell}) \cdot[\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot [\Pi_{m=1...\ell}\sigma^z_m ]\cdot(c^{\dagger}_{\ell+1}+c_{\ell+1})

    =(c^{\dagger}_{\ell}+c_{\ell}) \cdot \sigma^z_{\ell}\cdot(c^{\dagger}_{\ell+1}+c_{\ell+1}) ------(1)

    Since \sigma^z_{\ell}=2c^{\dagger}_{\ell}c_{\ell}-1, one will have

    (c^{\dagger}_{\ell}+c_{\ell})\cdot \sigma^z_{\ell}

    = (c^{\dagger}_{\ell}+c_{\ell})\cdot(2c^{\dagger}_{\ell}c_{\ell}-1)

    = c^{\dagger}_{\ell} \cdot(2c^{\dagger}_{\ell}c_{\ell}-1) +c_{\ell}\cdot(2c^{\dagger}_{\ell}c_{\ell}-1)

    =- c^{\dagger}_{\ell} +c_{\ell}\cdot(2c^{\dagger}_{\ell}c_{\ell}-1)

    =- c^{\dagger}_{\ell} +2c_{\ell}\cdot c^{\dagger}_{\ell}c_{\ell}-c_{\ell}

    =- c^{\dagger}_{\ell} +2c_{\ell}\cdot (1- c_{\ell}c^{\dagger}_{\ell})-c_{\ell}

    = - c^{\dagger}_{\ell} + c_{\ell} ------(2)

    According to (1) and (2), we finally have

    \sigma^x_{\ell}\sigma^x_{\ell+1}=- (c^{\dagger}_{\ell}- c_{\ell})\cdot(c^{\dagger}_{\ell+1}+c_{\ell+1})

  • Jordan-Wigner transformation for \sigma^y_{\ell}\sigma^y_{\ell+1}

    \sigma^y_{\ell}\sigma^y_{\ell+1}

    =-[\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot(c^{\dagger}_{\ell}-c_{\ell})\cdot [\Pi_{m=1...\ell}\sigma^z_m ] \cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    =-(c^{\dagger}_{\ell}-c_{\ell})\cdot [\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot [\Pi_{m=1...\ell}\sigma^z_m ] \cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    =-(c^{\dagger}_{\ell}-c_{\ell})\cdot \sigma^z_{\ell} \cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    =-(c^{\dagger}_{\ell}-c_{\ell})\cdot (2c^{\dagger}_{\ell}c_{\ell}-1)\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    =-[c^{\dagger}_{\ell}\cdot (2c^{\dagger}_{\ell}c_{\ell}-1)-c_{\ell}\cdot (2c^{\dagger}_{\ell}c_{\ell}-1)]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    =-[ (c^{\dagger}_{\ell}\cdot2c^{\dagger}_{\ell}c_{\ell}-c^{\dagger}_{\ell})-(2c_{\ell}\cdot c^{\dagger}_{\ell}c_{\ell}-c_{\ell})]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    =-[ (0-c^{\dagger}_{\ell})-(2c_{\ell}\cdot c^{\dagger}_{\ell}c_{\ell}-c_{\ell})]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    =-[ -c^{\dagger}_{\ell}-2c_{\ell}\cdot c^{\dagger}_{\ell}c_{\ell}+c_{\ell}]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    =-[ -c^{\dagger}_{\ell}-2c_{\ell}\cdot (1-c_{\ell}c^{\dagger}_{\ell})+c_{\ell}]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    =-[ -c^{\dagger}_{\ell}-2c_{\ell}+c_{\ell}]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    =-[ -c^{\dagger}_{\ell}-c_{\ell}]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    =(c^{\dagger}_{\ell}+c_{\ell})\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

  • Jordan-Wigner transformation for \sigma^z_{\ell}\sigma^z_{\ell+1}

    \sigma^z_{\ell}\sigma^z_{\ell+1}=(2c^{\dagger}_{\ell}c_{\ell}-1)(2c^{\dagger}_{\ell+1}c_{\ell+1}-1)

  • Finally, according to the sequence in Fig. 2 of Chen2008, we have

    H=-J_x\sum_{x-links}[- (c^{\dagger}_{\ell}- c_{\ell})\cdot(c^{\dagger}_{\ell+1}+c_{\ell+1})]

    -J_y\sum_{y-links}(c^{\dagger}_{\ell}+c_{\ell})\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    -J_z\sum_{z-links}(2c^{\dagger}_{\ell}c_{\ell}-1)(2c^{\dagger}_{\ell+1}c_{\ell+1}-1)

H=J_x\sum_{x-links}(c^{\dagger}_{\ell}- c_{\ell})\cdot(c^{\dagger}_{\ell+1}+c_{\ell+1})
-J_y\sum_{y-links}(c^{\dagger}_{\ell}+c_{\ell})\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})
-J_z\sum_{z-links}(2c^{\dagger}_{\ell}c_{\ell}-1)(2c^{\dagger}_{\ell+1}c_{\ell+1}-1)

H=J_x\sum_{x-links}(c^{\dagger}- c)_w\cdot(c^{\dagger}+c)_b
-J_y\sum_{y-links}(c^{\dagger}+c)_b\cdot(c^{\dagger}-c)_w
-J_z\sum_{z-links}(2c^{\dagger}c-1)_b(2c^{\dagger} c -1)_w ------(4)

Majorana fermions

For white sites,

A_w = \frac{1} {i}(c-c^{\dagger})_w

B_w = (c+c^{\dagger})_w

For black sites

B_b = \frac{1} {i}(c-c^{\dagger})_b

A_b = (c+c^{\dagger})_b

B_b A_b= \frac{1} {i}(c-c^{\dagger})_b(c+c^{\dagger})_b

=-i(c^2+cc^{\dagger}-c^{\dagger}c-c^{\dagger2})

=-i(cc^{\dagger}-c^{\dagger}c)

=-i(1-2c^{\dagger}c)

=i(2c^{\dagger}c-1)

J_x\sum_{x-links}(c^{\dagger}- c)_w\cdot(c^{\dagger}+c)_b

=J_x\sum_x (-iA_w) \cdot A_b

=-iJ_x\sum_x A_w \cdot A_b

-J_y\sum_{y-links}(c^{\dagger}+c)_b\cdot(c^{\dagger}-c)_w

=-J_y\sum_y A_b \cdot (-iA_w)

=iJ_y\sum_y A_b \cdot A_w

-J_z\sum_{z-links}(2c^{\dagger}c-1)_b(2c^{\dagger} c -1)_w

=-J_z\sum_z (B_b A_b)(B_w A_w)

=J_z\sum_z (B_b B_w) A_bA_w

=-iJ_z\sum_z (iB_b B_w) A_bA_w

=-iJ_z\sum_z \alpha_r A_bA_w

H\{\alpha\}=-iJ_x\sum_x A_w \cdot A_b+iJ_y\sum_y A_b \cdot A_w -iJ_z\sum_z \alpha_r A_bA_w

5.1 Diagonalization

d=(A_w+iA_b)/2

d^{\dagger}=(A_w-iA_b)/2

** 公式(18)的证明

相关文章

网友评论

      本文标题:2020-02-14 Kitaev model on a hex

      本文链接:https://www.haomeiwen.com/subject/weesfhtx.html