美文网首页
2020-02-14 Kitaev model on a hex

2020-02-14 Kitaev model on a hex

作者: 低维量子系统 | 来源:发表于2020-02-14 23:00 被阅读0次

    Kitaev model on the hexagonal lattice

    这两天摈弃了所有杂念,踏踏实实学习Kitaev model。找到的一篇能够follow的文献是Chen在2008年发表的论文。


    • 标题:Exact results of the Kitaev model on a hexagonal lattice: spin states, string and brane correlators, and anyonic excitations
    • 作者:Han-Dong Chen and Zohar Nussinov
    • 全文链接:论文

    • 笔记的目的
      • 日后关于Jordan-Wigner变换,Wick定理,傅立叶变换等,可以在这里温习。
      • 如果日后恰好有人学到这篇文献,希望这篇笔记能够帮到他(她)。
    Hamiltonian

    H=-J_x\sum_{x-links}\sigma_j^x\sigma_k^x-J_y\sum_{y-links}\sigma_j^y\sigma_k^y-J_z\sum_{z-links}\sigma_j^z\sigma_k^z

    pauli operators
    • \sigma^x=[0,1;1,0]

      \sigma^y=[0,-i;i,0]

      \sigma^z=[1,0;0,-1]

    • \sigma_x^2=\sigma_y^2=\sigma_z^2=I

    • \sigma_x\sigma_y\sigma_z=I

      \sigma_y\sigma_z\sigma_x=I

      \sigma_z\sigma_x\sigma_y=I

    • \sigma_z\sigma_y\sigma_x=-i

      \sigma_y\sigma_x\sigma_z=-i

      \sigma_x\sigma_z\sigma_y=-i

    fermion operators

    \{a^{\dagger}_j,a_j\}=1

    \{a^{\dagger}_j,a_k\}=0

    \{a_j,a_k\}=0

    \{a^{\dagger}_j,a^{\dagger}_k\}=0

    a_j^2=0

    {a^{\dagger2}_j}=0

    Jordan-Wigner transformation from spin operators to fermion operators
    • \sigma^x_{\ell}=[\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot(c^{\dagger}_{\ell}+c_{\ell})

      \sigma^y_{\ell}=-i\cdot[\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot(c^{\dagger}_{\ell}-c_{\ell})

      \sigma^z_{\ell}=2c^{\dagger}_{\ell}c_{\ell}-1

    • communication relations

      [\sigma^z_{\ell},c^{\dagger}_j]

      =[2c^{\dagger}_{\ell}c_{\ell}-1,c^{\dagger}_j]

      =(2c^{\dagger}_{\ell}c_{\ell}-1)\cdot c^{\dagger}_j - c^{\dagger}_j \cdot (2c^{\dagger}_{\ell}c_{\ell}-1)

      =(2c^{\dagger}_{\ell}c_{\ell}\cdot c^{\dagger}_j- c^{\dagger}_j) - (2 c^{\dagger}_j \cdot c^{\dagger}_{\ell}c_{\ell}-c^{\dagger}_j )

      =2c^{\dagger}_{\ell}c_{\ell}\cdot c^{\dagger}_j - 2 c^{\dagger}_j \cdot c^{\dagger}_{\ell}c_{\ell}

      =0

      [\sigma^z_{\ell},c^{\dagger}_{\ell}]

      =[2c^{\dagger}_{\ell}c_{\ell}-1,c^{\dagger}_{\ell}]

      =(2c^{\dagger}_{\ell}c_{\ell}-1)\cdot c^{\dagger}_{\ell} - c^{\dagger}_{\ell} \cdot (2c^{\dagger}_{\ell}c_{\ell}-1)

      =(2c^{\dagger}_{\ell}c_{\ell}\cdot c^{\dagger}_{\ell}- c^{\dagger}_{\ell}) - (2 c^{\dagger}_{\ell} \cdot c^{\dagger}_{\ell}c_{\ell}-c^{\dagger}_{\ell} )

      =2c^{\dagger}_{\ell}c_{\ell}\cdot c^{\dagger}_{\ell}

      =2c^{\dagger}_{\ell}\cdot (1-c^{\dagger}_{\ell} c_{\ell})

      =2c^{\dagger}_{\ell}

    • Jordan-Wigner transformation for \sigma^x_{\ell}\sigma^x_{\ell+1}

      \sigma^x_{\ell}\sigma^x_{\ell+1}

      =[\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot(c^{\dagger}_{\ell}+c_{\ell}) \cdot [\Pi_{m=1...\ell}\sigma^z_m ] \cdot(c^{\dagger}_{\ell+1}+c_{\ell+1})

      =(c^{\dagger}_{\ell}+c_{\ell}) \cdot[\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot [\Pi_{m=1...\ell}\sigma^z_m ]\cdot(c^{\dagger}_{\ell+1}+c_{\ell+1})

      =(c^{\dagger}_{\ell}+c_{\ell}) \cdot \sigma^z_{\ell}\cdot(c^{\dagger}_{\ell+1}+c_{\ell+1}) ------(1)

      Since \sigma^z_{\ell}=2c^{\dagger}_{\ell}c_{\ell}-1, one will have

      (c^{\dagger}_{\ell}+c_{\ell})\cdot \sigma^z_{\ell}

      = (c^{\dagger}_{\ell}+c_{\ell})\cdot(2c^{\dagger}_{\ell}c_{\ell}-1)

      = c^{\dagger}_{\ell} \cdot(2c^{\dagger}_{\ell}c_{\ell}-1) +c_{\ell}\cdot(2c^{\dagger}_{\ell}c_{\ell}-1)

      =- c^{\dagger}_{\ell} +c_{\ell}\cdot(2c^{\dagger}_{\ell}c_{\ell}-1)

      =- c^{\dagger}_{\ell} +2c_{\ell}\cdot c^{\dagger}_{\ell}c_{\ell}-c_{\ell}

      =- c^{\dagger}_{\ell} +2c_{\ell}\cdot (1- c_{\ell}c^{\dagger}_{\ell})-c_{\ell}

      = - c^{\dagger}_{\ell} + c_{\ell} ------(2)

      According to (1) and (2), we finally have

      \sigma^x_{\ell}\sigma^x_{\ell+1}=- (c^{\dagger}_{\ell}- c_{\ell})\cdot(c^{\dagger}_{\ell+1}+c_{\ell+1})

    • Jordan-Wigner transformation for \sigma^y_{\ell}\sigma^y_{\ell+1}

      \sigma^y_{\ell}\sigma^y_{\ell+1}

      =-[\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot(c^{\dagger}_{\ell}-c_{\ell})\cdot [\Pi_{m=1...\ell}\sigma^z_m ] \cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      =-(c^{\dagger}_{\ell}-c_{\ell})\cdot [\Pi_{m=1...\ell-1}\sigma^z_m ] \cdot [\Pi_{m=1...\ell}\sigma^z_m ] \cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      =-(c^{\dagger}_{\ell}-c_{\ell})\cdot \sigma^z_{\ell} \cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      =-(c^{\dagger}_{\ell}-c_{\ell})\cdot (2c^{\dagger}_{\ell}c_{\ell}-1)\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      =-[c^{\dagger}_{\ell}\cdot (2c^{\dagger}_{\ell}c_{\ell}-1)-c_{\ell}\cdot (2c^{\dagger}_{\ell}c_{\ell}-1)]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      =-[ (c^{\dagger}_{\ell}\cdot2c^{\dagger}_{\ell}c_{\ell}-c^{\dagger}_{\ell})-(2c_{\ell}\cdot c^{\dagger}_{\ell}c_{\ell}-c_{\ell})]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      =-[ (0-c^{\dagger}_{\ell})-(2c_{\ell}\cdot c^{\dagger}_{\ell}c_{\ell}-c_{\ell})]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      =-[ -c^{\dagger}_{\ell}-2c_{\ell}\cdot c^{\dagger}_{\ell}c_{\ell}+c_{\ell}]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      =-[ -c^{\dagger}_{\ell}-2c_{\ell}\cdot (1-c_{\ell}c^{\dagger}_{\ell})+c_{\ell}]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      =-[ -c^{\dagger}_{\ell}-2c_{\ell}+c_{\ell}]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      =-[ -c^{\dagger}_{\ell}-c_{\ell}]\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      =(c^{\dagger}_{\ell}+c_{\ell})\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

    • Jordan-Wigner transformation for \sigma^z_{\ell}\sigma^z_{\ell+1}

      \sigma^z_{\ell}\sigma^z_{\ell+1}=(2c^{\dagger}_{\ell}c_{\ell}-1)(2c^{\dagger}_{\ell+1}c_{\ell+1}-1)

    • Finally, according to the sequence in Fig. 2 of Chen2008, we have

      H=-J_x\sum_{x-links}[- (c^{\dagger}_{\ell}- c_{\ell})\cdot(c^{\dagger}_{\ell+1}+c_{\ell+1})]

      -J_y\sum_{y-links}(c^{\dagger}_{\ell}+c_{\ell})\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})

      -J_z\sum_{z-links}(2c^{\dagger}_{\ell}c_{\ell}-1)(2c^{\dagger}_{\ell+1}c_{\ell+1}-1)

    H=J_x\sum_{x-links}(c^{\dagger}_{\ell}- c_{\ell})\cdot(c^{\dagger}_{\ell+1}+c_{\ell+1})
    -J_y\sum_{y-links}(c^{\dagger}_{\ell}+c_{\ell})\cdot(c^{\dagger}_{\ell+1}-c_{\ell+1})
    -J_z\sum_{z-links}(2c^{\dagger}_{\ell}c_{\ell}-1)(2c^{\dagger}_{\ell+1}c_{\ell+1}-1)

    H=J_x\sum_{x-links}(c^{\dagger}- c)_w\cdot(c^{\dagger}+c)_b
    -J_y\sum_{y-links}(c^{\dagger}+c)_b\cdot(c^{\dagger}-c)_w
    -J_z\sum_{z-links}(2c^{\dagger}c-1)_b(2c^{\dagger} c -1)_w ------(4)

    Majorana fermions

    For white sites,

    A_w = \frac{1} {i}(c-c^{\dagger})_w

    B_w = (c+c^{\dagger})_w

    For black sites

    B_b = \frac{1} {i}(c-c^{\dagger})_b

    A_b = (c+c^{\dagger})_b

    B_b A_b= \frac{1} {i}(c-c^{\dagger})_b(c+c^{\dagger})_b

    =-i(c^2+cc^{\dagger}-c^{\dagger}c-c^{\dagger2})

    =-i(cc^{\dagger}-c^{\dagger}c)

    =-i(1-2c^{\dagger}c)

    =i(2c^{\dagger}c-1)

    J_x\sum_{x-links}(c^{\dagger}- c)_w\cdot(c^{\dagger}+c)_b

    =J_x\sum_x (-iA_w) \cdot A_b

    =-iJ_x\sum_x A_w \cdot A_b

    -J_y\sum_{y-links}(c^{\dagger}+c)_b\cdot(c^{\dagger}-c)_w

    =-J_y\sum_y A_b \cdot (-iA_w)

    =iJ_y\sum_y A_b \cdot A_w

    -J_z\sum_{z-links}(2c^{\dagger}c-1)_b(2c^{\dagger} c -1)_w

    =-J_z\sum_z (B_b A_b)(B_w A_w)

    =J_z\sum_z (B_b B_w) A_bA_w

    =-iJ_z\sum_z (iB_b B_w) A_bA_w

    =-iJ_z\sum_z \alpha_r A_bA_w

    H\{\alpha\}=-iJ_x\sum_x A_w \cdot A_b+iJ_y\sum_y A_b \cdot A_w -iJ_z\sum_z \alpha_r A_bA_w

    5.1 Diagonalization

    d=(A_w+iA_b)/2

    d^{\dagger}=(A_w-iA_b)/2

    ** 公式(18)的证明

    相关文章

      网友评论

          本文标题:2020-02-14 Kitaev model on a hex

          本文链接:https://www.haomeiwen.com/subject/weesfhtx.html