美文网首页Python
这个体位写python真舒服

这个体位写python真舒服

作者: hxzqlh | 来源:发表于2014-11-12 15:34 被阅读430次

    Python 还能这样写?我一看就掉下巴了……
    整个集合大概是按照难易程度排序,简单常见的在前面,比较少见的在最后。

    拆箱

    >>> a, b, c = 1, 2, 3
    >>> a, b, c
    (1, 2, 3)
    >>> a, b, c = [1, 2, 3]
    >>> a, b, c
    (1, 2, 3)
    >>> a, b, c = (2 * i + 1 for i in range(3))
    >>> a, b, c
    (1, 3, 5)
    >>> a, (b, c), d = [1, (2, 3), 4]
    >>> a
    1
    >>> b
    2
    >>> c
    3
    >>> d
    4
    

    拆箱变量交换

    >>> a, b = 1, 2
    >>> a, b = b, a
    >>> a, b
    (2, 1)
    

    扩展拆箱(只兼容python3)

    >>> a, *b, c = [1, 2, 3, 4, 5]
    >>> a
    1
    >>> b
    [2, 3, 4]
    >>> c
    5
    

    负数索引

    >>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    >>> a[-1]
    10
    >>> a[-3]
    8
    

    切割列表

    >>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    >>> a[2:8]
    [2, 3, 4, 5, 6, 7]
    

    负数索引切割列表

    >>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    >>> a[-4:-2]
    [7, 8]
    

    指定步长切割列表

    >>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    >>> a[::2]
    [0, 2, 4, 6, 8, 10]
    >>> a[::3]
    [0, 3, 6, 9]
    >>> a[2:8:2]
    [2, 4, 6]
    

    负数步长切割列表

    >>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    >>> a[::-1]
    [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]  #逆序输出
    >>> a[::-2]
    [10, 8, 6, 4, 2, 0]
    

    列表切割赋值

    >>> a = [1, 2, 3, 4, 5]
    >>> a[2:3] = [0, 0]
    >>> a
    [1, 2, 0, 0, 4, 5]
    >>> a[1:1] = [8, 9]
    >>> a
    [1, 8, 9, 2, 0, 0, 4, 5]
    >>> a[1:-1] = []
    >>> a
    [1, 5]
    

    压缩和解压缩

    >>> a = [1, 2, 3]
    >>> b = ['a', 'b', 'c']
    >>> z = zip(a, b)
    >>> z
    [(1, 'a'), (2, 'b'), (3, 'c')]
    >>> zip(*z)
    [(1, 2, 3), ('a', 'b', 'c')
    

    列表相邻元素压缩器

    >>> a = [1, 2, 3, 4, 5, 6]
    >>> zip(*([iter(a)] * 2))
    [(1, 2), (3, 4), (5, 6)]
     
    >>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))
    >>> group_adjacent(a, 3)
    [(1, 2, 3), (4, 5, 6)]
    >>> group_adjacent(a, 2)
    [(1, 2), (3, 4), (5, 6)]
    >>> group_adjacent(a, 1)
    [(1,), (2,), (3,), (4,), (5,), (6,)]
     
    >>> zip(a[::2], a[1::2])
    [(1, 2), (3, 4), (5, 6)]
     
    >>> zip(a[::3], a[1::3], a[2::3])
    [(1, 2, 3), (4, 5, 6)]
     
    >>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))
    >>> group_adjacent(a, 3)
    [(1, 2, 3), (4, 5, 6)]
    >>> group_adjacent(a, 2)
    [(1, 2), (3, 4), (5, 6)]
    >>> group_adjacent(a, 1)
    [(1,), (2,), (3,), (4,), (5,), (6,)]
    

    在列表中用压缩器和迭代器滑动取值窗口

    >>> def n_grams(a, n):
    ...     z = [iter(a[i:]) for i in range(n)]
    ...     return zip(*z)
    ...
    >>> a = [1, 2, 3, 4, 5, 6]
    >>> n_grams(a, 3)
    [(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
    >>> n_grams(a, 2)
    [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
    >>> n_grams(a, 4)
    [(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
    

    用压缩器反转字典

    >>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
    >>> m.items()
    [('a', 1), ('c', 3), ('b', 2), ('d', 4)]
    >>> zip(m.values(), m.keys())
    [(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]
    >>> mi = dict(zip(m.values(), m.keys()))
    >>> mi
    {1: 'a', 2: 'b', 3: 'c', 4: 'd'}
    

    字典推导

    >>> m = {x: x ** 2 for x in range(5)}
    >>> m
    {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
     
    >>> m = {x: 'A' + str(x) for x in range(10)}
    >>> m
    {0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}
    

    用字典推导反转字典

    >>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
    >>> m
    {'d': 4, 'a': 1, 'b': 2, 'c': 3}
    >>> {v: k for k, v in m.items()}
    {1: 'a', 2: 'b', 3: 'c', 4: 'd'}
    

    命名元组

    >>> Point = collections.namedtuple('Point', ['x', 'y'])
    >>> p = Point(x=1.0, y=2.0)
    >>> p
    Point(x=1.0, y=2.0)
    >>> p.x
    1.0
    >>> p.y
    2.0
    

    继承命名元组

    >>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):
    ...     __slots__ = ()
    ...     def __add__(self, other):
    ...             return Point(x=self.x + other.x, y=self.y + other.y)
    ...
    >>> p = Point(x=1.0, y=2.0)
    >>> q = Point(x=2.0, y=3.0)
    >>> p + q
    Point(x=3.0, y=5.0)
    

    操作集合

    >>> A = {1, 2, 3, 3}
    >>> A
    set([1, 2, 3])
    >>> B = {3, 4, 5, 6, 7}
    >>> B
    set([3, 4, 5, 6, 7])
    >>> A | B
    set([1, 2, 3, 4, 5, 6, 7])
    >>> A & B
    set([3])
    >>> A - B
    set([1, 2])
    >>> B - A
    set([4, 5, 6, 7])
    >>> A ^ B
    set([1, 2, 4, 5, 6, 7])
    >>> (A ^ B) == ((A - B) | (B - A))
    True
    

    操作多重集合

    >>> A = collections.Counter([1, 2, 2])
    >>> B = collections.Counter([2, 2, 3])
    >>> A
    Counter({2: 2, 1: 1})
    >>> B
    Counter({2: 2, 3: 1})
    >>> A | B
    Counter({2: 2, 1: 1, 3: 1})
    >>> A & B
    Counter({2: 2})
    >>> A + B
    Counter({2: 4, 1: 1, 3: 1})
    >>> A - B
    Counter({1: 1})
    >>> B - A
    Counter({3: 1})
    

    统计在可迭代器中最常出现的元素

    >>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
    >>> A
    Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
    >>> A.most_common(1)
    [(3, 4)]
    >>> A.most_common(3)
    [(3, 4), (1, 2), (2, 2)]
    

    两端都可操作的队列

    >>> Q = collections.deque()
    >>> Q.append(1)
    >>> Q.appendleft(2)
    >>> Q.extend([3, 4])
    >>> Q.extendleft([5, 6])
    >>> Q
    deque([6, 5, 2, 1, 3, 4])
    >>> Q.pop()
    4
    >>> Q.popleft()
    6
    >>> Q
    deque([5, 2, 1, 3])
    >>> Q.rotate(3)
    >>> Q
    deque([2, 1, 3, 5])
    >>> Q.rotate(-3)
    >>> Q
    deque([5, 2, 1, 3])
    

    有最大长度的双端队列

    >>> last_three = collections.deque(maxlen=3)
    >>> for i in xrange(10):
    ...     last_three.append(i)
    ...     print ', '.join(str(x) for x in last_three)
    ...
    0
    0, 1
    0, 1, 2
    1, 2, 3
    2, 3, 4
    3, 4, 5
    4, 5, 6
    5, 6, 7
    6, 7, 8
    7, 8, 9
    

    可排序词典

    >>> m = dict((str(x), x) for x in range(10))
    >>> print ', '.join(m.keys())
    1, 0, 3, 2, 5, 4, 7, 6, 9, 8
    >>> m = collections.OrderedDict((str(x), x) for x in range(10))
    >>> print ', '.join(m.keys())
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9
    >>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))
    >>> print ', '.join(m.keys())
    10, 9, 8, 7, 6, 5, 4, 3, 2, 1
    

    默认词典

    >>> m = dict()
    >>> m['a']
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    KeyError: 'a'
    >>>
    >>> m = collections.defaultdict(int)
    >>> m['a']
    0
    >>> m['b']
    0
    >>> m = collections.defaultdict(str)
    >>> m['a']
    ''
    >>> m['b'] += 'a'
    >>> m['b']
    'a'
    >>> m = collections.defaultdict(lambda: '[default value]')
    >>> m['a']
    '[default value]'
    >>> m['b']
    '[default value]'
    

    对象到唯一计数的映射

    >>> import itertools, collections
    >>> value_to_numeric_map = collections.defaultdict(itertools.count().next)
    >>> value_to_numeric_map['a']
    0
    >>> value_to_numeric_map['b']
    1
    >>> value_to_numeric_map['c']
    2
    >>> value_to_numeric_map['a']
    0
    >>> value_to_numeric_map['b']
    1
    

    最大和最小的几个列表元素

    >>> a = [random.randint(0, 100) for __ in xrange(100)]
    >>> heapq.nsmallest(5, a)
    [3, 3, 5, 6, 8]
    >>> heapq.nlargest(5, a)
    [100, 100, 99, 98, 98]
    

    两个列表的笛卡尔积

    >>> for p in itertools.product([1, 2, 3], [4, 5]):
    (1, 4)
    (1, 5)
    (2, 4)
    (2, 5)
    (3, 4)
    (3, 5)
    >>> for p in itertools.product([0, 1], repeat=4):
    ...     print ''.join(str(x) for x in p)
    ...
    0000
    0001
    0010
    0011
    0100
    0101
    0110
    0111
    1000
    1001
    1010
    1011
    1100
    1101
    1110
    1111
    

    列表组合和列表元素替代组合

    >>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):
    ...     print ''.join(str(x) for x in c)
    ...
    123
    124
    125
    134
    135
    145
    234
    235
    245
    345
    >>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):
    ...     print ''.join(str(x) for x in c)
    ...
    11
    12
    13
    22
    23
    33
    

    列表元素排列组合

    >>> for p in itertools.permutations([1, 2, 3, 4]):
    ...     print ''.join(str(x) for x in p)
    ...
    1234
    1243
    1324
    1342
    1423
    1432
    2134
    2143
    2314
    2341
    2413
    2431
    3124
    3142
    3214
    3241
    3412
    3421
    4123
    4132
    4213
    4231
    4312
    4321
    

    可链接迭代器

    >>> a = [1, 2, 3, 4]
    >>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):
    ...     print p
    ...
    (1, 2)
    (1, 3)
    (1, 4)
    (2, 3)
    (2, 4)
    (3, 4)
    (1, 2, 3)
    (1, 2, 4)
    (1, 3, 4)
    (2, 3, 4)
    >>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))
    ...     print subset
    ...
    ()
    (1,)
    (2,)
    (3,)
    (4,)
    (1, 2)
    (1, 3)
    (1, 4)
    (2, 3)
    (2, 4)
    (3, 4)
    (1, 2, 3)
    (1, 2, 4)
    (1, 3, 4)
    (2, 3, 4)
    (1, 2, 3, 4)
    

    在任意目录启动一个http服务器

    [10:26] $ python -m SimpleHTTPServer 5000
    Serving HTTP on 0.0.0.0 port 5000 ...
    

    python 之禅

    >>> import this
    The Zen of Python, by Tim Peters
    
    Beautiful is better than ugly.
    Explicit is better than implicit.
    Simple is better than complex.
    Complex is better than complicated.
    Flat is better than nested.
    Sparse is better than dense.
    Readability counts.
    Special cases aren't special enough to break the rules.
    Although practicality beats purity.
    Errors should never pass silently.
    Unless explicitly silenced.
    In the face of ambiguity, refuse the temptation to guess.
    There should be one-- and preferably only one --obvious way to do it.
    Although that way may not be obvious at first unless you're Dutch.
    Now is better than never.
    Although never is often better than *right* now.
    If the implementation is hard to explain, it's a bad idea.
    If the implementation is easy to explain, it may be a good idea.
    Namespaces are one honking great idea -- let's do more of those!
    

    相关文章

      网友评论

        本文标题:这个体位写python真舒服

        本文链接:https://www.haomeiwen.com/subject/wetitttx.html