美文网首页
吴恩达的机器学习课程笔记章节二(1)

吴恩达的机器学习课程笔记章节二(1)

作者: 向布谷鸟说早安 | 来源:发表于2018-02-16 20:38 被阅读29次

    课时1 单变量线性回归
    监督学习的过程可以用下面过程来表示:
    training set ——> learning algorithm ——> h

    上述的h代表假设函数,h的输入和输出分别是输入的已知数据和输出的预测结果。
    我们用h(x) = θ0 + θ1 x 来代表预测函数表达式,这个表达式也是单变量线性回归函数。
    课时2 单变量线性回归的代价函数(用来评判函数的近似程度)


    代价函数

    上述表达式随着θ0,θ1的变化而变化,J(θ0,θ1)即为代价函数。(代价函数又被称为平方误差函数)
    课时3 代价函数(1)
    假设函数——>代价函数
    上述h(x)即我们假设的假设函数。J(θ0,θ1)即是相应的代价函数。
    通过简化线性模型,计算误差。(减少一个参数θ0)

    简化模型
    假设函数和代价函数

    课时4 代价函数(2)
    非简化模型
    代价函数是一个3D的碗状图形,为了方便观察,一个等高线图是一个方便的观察方式。


    假设函数和等高线图的代价函数

    相关文章

      网友评论

          本文标题:吴恩达的机器学习课程笔记章节二(1)

          本文链接:https://www.haomeiwen.com/subject/wgjptftx.html