待更新
第一个例子
import tensorflow as tf
import numpy as np
# create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))
y = Weights*x_data + biases
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
init = tf.global_variables_initializer() # 替换成这样就好
sess = tf.Session()
sess.run(init) # Very important
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(Weights), sess.run(biases))
Session 控制
import tensorflow as tf
matrix1 = tf.constant([[3, 3]])
matrix2 = tf.constant([[2],
[2]])
product = tf.matmul(matrix1,matrix2) # matrix multipy np.dot(m1,m2)
#mehtod1
# sess = tf.Session()
# result = sess.run(product)
# print(result)
# sess.close()
# [[12]]
#method 2
with tf.Session() as sess:
result2 = sess.run(product)
print(result2)
# [[12]]
变量
import numpy as np
import tensorflow as tf
state = tf.Variable(0,name='counter')
one = tf.constant(1)
new_value = tf.add(state,one)
update = tf.assign(state,new_value)
init = tf.global_variables_initializer() # must have if define variable
with tf.Session() as sess:
sess.run(init)
for _ in range(3):
sess.run(update)
print(sess.run(state))
网友评论