演绎与归纳相反,是从普遍性结论或一般性的前提推出个别或特殊的结论。在研究个别问题时,以一般性的逻辑假设为基础,推出特定结论,这种从一般到特殊的推理被称为演绎。
在推理的形式合乎逻辑的条件下,应用演绎推理从真实的前提一定能推出真实的结论。例如,知道了“三角形的内角和是180°”的结论,我们让学生据此推出或求出直角三角形两个锐角的和是90°,推出或求出等腰直角三角形的两个锐角都是45°。再如,通过归纳得到乘法分配律(a+b)×c= a×c+b×c以后,我们要求学生应用乘法分配律进行72×(30+6)、32×102、46×12+54×12、45×99+45等的简便计算,在较多的计算活动中进一步体会乘法分配律的本质,提高灵活应用乘法分配律的能力。
学生像这样根据已经获得的定义、定律、公式等,去解决一个个具体的问题,通过这样一些由一般向特殊的演绎使得抽象的数学概念、规律和原理具体化,从而促进知识的数学理解和掌握,发展推理能力和思维能力。
网友评论