下例使用torchvision库提取了resnet最后一层的卷积特征;resnet各block的卷积特性,以及金字塔特性。
具体取哪一层特征视使用场景而定,resnet各block的输出包含更丰富的特征;从resnet最后一层提取的特征更为抽象;fpn每层通道数相等,含义也类似,可以在多层之间比较。
import os
import torchvision.models.detection.backbone_utils as backbone_utils
import torchvision
import torch.nn as nn
device = 'cuda'
os.environ["TORCH_HOME"] = '/notebooks/data/mine/live/code_v7/model/'
USE_FPN = True
if USE_FPN:
backbone = backbone_utils.resnet_fpn_backbone('resnet50', True)
features = list(backbone.children())[:-1] # 去掉最后的fpn层, 得到resnet的2,3,4层输出
#features = list(backbone.children()) # 计算图像金字塔输出, 低层包括具体和抽像特征
model = nn.Sequential(*features)
else:
backbone = torchvision.models.resnet50(pretrained=True)
features = list(backbone.children())[:-2] # 去掉全连接和池化层, 得到最后卷积层输出
model = nn.Sequential(*features)
model = model.to(device)
x = torch.rand([1,3,244,244]).to(device)
out = model(x)
if USE_FPN: # 多层输出
for key,value in out.items():
print(key, value.shape)
else: # 单层输出
print(out.shape)
网友评论