本文分析Java中Object类的wait和notify方法,深入JVM看一下底层是如何实现的。
wait和notify方法
Object类的wait和notify方法用于线程间的同步和互斥,它们在Java层面的定义如下:
public final void wait(long timeout, int nanos) throws InterruptedException {
if (timeout < 0) {
throw new IllegalArgumentException("timeout value is negative");
}
if (nanos < 0 || nanos > 999999) {
throw new IllegalArgumentException(
"nanosecond timeout value out of range");
}
if (nanos > 0) {
timeout++;
}
wait(timeout);
}
public final void wait() throws InterruptedException {
wait(0);
}
public final native void wait(long timeout) throws InterruptedException;
public final native void notify();
public final native void notifyAll();
可以看到最后调用的都是native方法,这些native方法都是由Object类的registerNatives静态方法在静态代码块注册的。registerNatives方法对应的JNI方法可在OpenJDK的源码jdk/src/share/native/java/lang/Object.c中找到定义。该方法调用RegisterNatives函数向JVM注册了其他的JNI方法如hashCode、wait、notify和notifyAll等。
static JNINativeMethod methods[] = {
{"hashCode", "()I", (void *)&JVM_IHashCode},
{"wait", "(J)V", (void *)&JVM_MonitorWait},
{"notify", "()V", (void *)&JVM_MonitorNotify},
{"notifyAll", "()V", (void *)&JVM_MonitorNotifyAll},
{"clone", "()Ljava/lang/Object;", (void *)&JVM_Clone},
};
JNIEXPORT void JNICALL
Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)
{
(*env)->RegisterNatives(env, cls,
methods, sizeof(methods)/sizeof(methods[0]));
}
Hotspot中的实现
wait方法
wait方法在Hotspot中的实现是文件openjdk8/hotspot/src/share/vm/prims/jvm.cpp中的JVM_MonitorWait函数,预处理后的代码如下所示:
extern "C" {
void JNICALL JVM_MonitorWait(JNIEnv* env, jobject handle, jlong ms) {
JavaThread* thread=JavaThread::thread_from_jni_environment(env);
ThreadInVMfromNative __tiv(thread);
HandleMarkCleaner __hm(thread);
Thread* __the_thread__ = thread;
os::verify_stack_alignment();
Handle obj(__the_thread__, JNIHandles::resolve_non_null(handle));
JavaThreadInObjectWaitState jtiows(thread, ms != 0);
if (JvmtiExport::should_post_monitor_wait()) {
JvmtiExport::post_monitor_wait((JavaThread *)__the_thread__, (oop)obj(), ms);
}
ObjectSynchronizer::wait(obj, ms, __the_thread__);
if ((((ThreadShadow*)__the_thread__)->has_pending_exception())) return ; (void)(0);
}
}
重点在ObjectSynchronizer类的wait静态函数,预处理后的代码如下:
// NOTE: must use heavy weight monitor to handle wait()
void ObjectSynchronizer::wait(Handle obj, jlong millis, Thread* __the_thread__) {
if (UseBiasedLocking) {
BiasedLocking::revoke_and_rebias(obj, false, __the_thread__);
}
if (millis < 0) {
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
}
ObjectMonitor* monitor = ObjectSynchronizer::inflate(__the_thread__, obj());
monitor->wait(millis, true, __the_thread__);
dtrace_waited_probe(monitor, obj, __the_thread__);
}
- 注释内容说明一旦使用了wait,那么就必须使用重量级的监视器;
- 如果启用了偏向锁,首先需要撤销偏向;
- 然后利用ObjectSynchronizer::inflate函数取得obj对象的监视器指针,在监视器上调用wait成员函数。
notify方法
notify方法在Hotspot中的实现是文件openjdk8/hotspot/src/share/vm/prims/jvm.cpp中的JVM_MonitorNotify函数,预处理后的代码如下所示:
extern "C" {
void JNICALL JVM_MonitorNotify(JNIEnv* env, jobject handle) {
JavaThread* thread=JavaThread::thread_from_jni_environment(env);
ThreadInVMfromNative __tiv(thread);
HandleMarkCleaner __hm(thread);
Thread* __the_thread__ = thread;
os::verify_stack_alignment();
Handle obj(__the_thread__, JNIHandles::resolve_non_null(handle));
ObjectSynchronizer::notify(obj, __the_thread__);
if ((((ThreadShadow*)__the_thread__)->has_pending_exception())) return ; (void)(0);
}
}
重点在ObjectSynchronizer类的notify静态函数,预处理后的代码如下:
void ObjectSynchronizer::notify(Handle obj, Thread* __the_thread__) {
if (UseBiasedLocking) {
BiasedLocking::revoke_and_rebias(obj, false, __the_thread__);
assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
}
markOop mark = obj->mark();
if (mark->has_locker() && __the_thread__->is_lock_owned((address)mark->locker())) {
return;
}
ObjectSynchronizer::inflate(__the_thread__, obj())->notify(__the_thread__);
}
- 如果启用了偏向锁,首先需要撤销偏向;
- 如果obj对象已经被轻量级锁锁定且锁记录在参数线程的方法栈内,则意味着该对象没有与之关联的监视器,也就是说没有竞争的线程,因此直接返回即可;
- 有竞争的情况下利用ObjectSynchronizer::inflate函数取得obj对象的监视器指针,在监视器上调用notify成员函数。
notifyAll方法
notifyAll方法在Hotspot中的实现是文件openjdk8/hotspot/src/share/vm/prims/jvm.cpp中的JVM_MonitorNotifyAll函数,与JVM_MonitorNotify函数相似,在此不再赘述。
ObjectMonitor类
前面的文章分析了ObjectMonitor类的实现以及enter和exit函数,本节分析wait、notify和notifyAll函数。
wait函数
wait函数代码如下:
void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
Thread * const Self = THREAD ;
assert(Self->is_Java_thread(), "Must be Java thread!");
JavaThread *jt = (JavaThread *)THREAD;
DeferredInitialize () ;
// Throw IMSX or IEX.
CHECK_OWNER(); // 一个宏,检查参数线程是否确实持有该监视器,如果不持有则抛出IllegalMonitorStateException;
// 如果持有则将_owner保存锁记录指针的情况转为_owner保存线程指针,同时令_recursions = 0,OwnerIsThread = 1
EventJavaMonitorWait event;
// check for a pending interrupt
if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) { // 已经被中断时抛出InterruptedException
// post monitor waited event. Note that this is past-tense, we are done waiting.
if (JvmtiExport::should_post_monitor_waited()) {
// Note: 'false' parameter is passed here because the
// wait was not timed out due to thread interrupt.
JvmtiExport::post_monitor_waited(jt, this, false);
// In this short circuit of the monitor wait protocol, the
// current thread never drops ownership of the monitor and
// never gets added to the wait queue so the current thread
// cannot be made the successor. This means that the
// JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
// consume an unpark() meant for the ParkEvent associated with
// this ObjectMonitor.
}
if (event.should_commit()) {
post_monitor_wait_event(&event, 0, millis, false);
}
TEVENT (Wait - Throw IEX) ;
THROW(vmSymbols::java_lang_InterruptedException());
return ;
}
TEVENT (Wait) ;
assert (Self->_Stalled == 0, "invariant") ;
Self->_Stalled = intptr_t(this) ;
jt->set_current_waiting_monitor(this); // 在JavaThread中保存该监视器指针
// create a node to be put into the queue
// Critically, after we reset() the event but prior to park(), we must check
// for a pending interrupt.
ObjectWaiter node(Self); // 将参数线程包装成ObjectWaiter
node.TState = ObjectWaiter::TS_WAIT ; // 需要放入WaitSet链表
Self->_ParkEvent->reset() ;
OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag
// Enter the waiting queue, which is a circular doubly linked list in this case
// but it could be a priority queue or any data structure.
// _WaitSetLock protects the wait queue. Normally the wait queue is accessed only
// by the the owner of the monitor *except* in the case where park()
// returns because of a timeout of interrupt. Contention is exceptionally rare
// so we use a simple spin-lock instead of a heavier-weight blocking lock.
Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
AddWaiter (&node) ; // 将参数线程放入WaitSet链表末尾
Thread::SpinRelease (&_WaitSetLock) ;
if ((SyncFlags & 4) == 0) {
_Responsible = NULL ;
}
intptr_t save = _recursions; // record the old recursion count
_waiters++; // increment the number of waiters
_recursions = 0; // set the recursion level to be 1
exit (true, Self) ; // exit the monitor 记住参数线程之前是持有该监视器的,调用wait方法会暂时放弃监视器
guarantee (_owner != Self, "invariant") ;
// The thread is on the WaitSet list - now park() it.
// On MP systems it's conceivable that a brief spin before we park
// could be profitable.
//
// TODO-FIXME: change the following logic to a loop of the form
// while (!timeout && !interrupted && _notified == 0) park()
int ret = OS_OK ;
int WasNotified = 0 ;
{ // State transition wrappers
OSThread* osthread = Self->osthread();
OSThreadWaitState osts(osthread, true);
{
ThreadBlockInVM tbivm(jt);
// Thread is in thread_blocked state and oop access is unsafe.
jt->set_suspend_equivalent();
if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
// Intentionally empty
} else
if (node._notified == 0) { // park参数线程,即之前持有监视器的线程
if (millis <= 0) {
Self->_ParkEvent->park () ;
} else {
ret = Self->_ParkEvent->park (millis) ;
}
}
// were we externally suspended while we were waiting?
if (ExitSuspendEquivalent (jt)) {
// TODO-FIXME: add -- if succ == Self then succ = null.
jt->java_suspend_self();
}
} // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
// Node may be on the WaitSet, the EntryList (or cxq), or in transition
// from the WaitSet to the EntryList.
// See if we need to remove Node from the WaitSet.
// We use double-checked locking to avoid grabbing _WaitSetLock
// if the thread is not on the wait queue.
//
// Note that we don't need a fence before the fetch of TState.
// In the worst case we'll fetch a old-stale value of TS_WAIT previously
// written by the is thread. (perhaps the fetch might even be satisfied
// by a look-aside into the processor's own store buffer, although given
// the length of the code path between the prior ST and this load that's
// highly unlikely). If the following LD fetches a stale TS_WAIT value
// then we'll acquire the lock and then re-fetch a fresh TState value.
// That is, we fail toward safety.
// 之前调用wait方法的线程被其他notify唤醒了,接下来重新竞争监视器,首先将参数线程从WaitSet移除
if (node.TState == ObjectWaiter::TS_WAIT) {
Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
if (node.TState == ObjectWaiter::TS_WAIT) {
DequeueSpecificWaiter (&node) ; // unlink from WaitSet
assert(node._notified == 0, "invariant");
node.TState = ObjectWaiter::TS_RUN ;
}
Thread::SpinRelease (&_WaitSetLock) ;
}
// 参数线程肯定不在WaitSet链表了,要么被直接唤醒(见notify函数),要么在EntryList,也可能在cxq
// The thread is now either on off-list (TS_RUN),
// on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
// The Node's TState variable is stable from the perspective of this thread.
// No other threads will asynchronously modify TState.
guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
OrderAccess::loadload() ;
if (_succ == Self) _succ = NULL ;
WasNotified = node._notified ;
// Reentry phase -- reacquire the monitor.
// re-enter contended monitor after object.wait().
// retain OBJECT_WAIT state until re-enter successfully completes
// Thread state is thread_in_vm and oop access is again safe,
// although the raw address of the object may have changed.
// (Don't cache naked oops over safepoints, of course).
// post monitor waited event. Note that this is past-tense, we are done waiting.
if (JvmtiExport::should_post_monitor_waited()) {
JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
if (node._notified != 0 && _succ == Self) {
// In this part of the monitor wait-notify-reenter protocol it
// is possible (and normal) for another thread to do a fastpath
// monitor enter-exit while this thread is still trying to get
// to the reenter portion of the protocol.
//
// The ObjectMonitor was notified and the current thread is
// the successor which also means that an unpark() has already
// been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
// consume the unpark() that was done when the successor was
// set because the same ParkEvent is shared between Java
// monitors and JVM/TI RawMonitors (for now).
//
// We redo the unpark() to ensure forward progress, i.e., we
// don't want all pending threads hanging (parked) with none
// entering the unlocked monitor.
node._event->unpark();
}
}
if (event.should_commit()) {
post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
}
OrderAccess::fence() ;
assert (Self->_Stalled != 0, "invariant") ;
Self->_Stalled = 0 ;
assert (_owner != Self, "invariant") ; // 被唤醒后该监视器并不由参数线程持有
ObjectWaiter::TStates v = node.TState ;
if (v == ObjectWaiter::TS_RUN) {
enter (Self) ;
} else {
guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
ReenterI (Self, &node) ;
node.wait_reenter_end(this);
}
// Self has reacquired the lock.
// Lifecycle - the node representing Self must not appear on any queues.
// Node is about to go out-of-scope, but even if it were immortal we wouldn't
// want residual elements associated with this thread left on any lists.
guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
assert (_owner == Self, "invariant") ; // 至此经过上面的enter或者ReenterI后,参数线程重新获得了该监视器
assert (_succ != Self , "invariant") ;
} // OSThreadWaitState()
jt->set_current_waiting_monitor(NULL); // 参数线程没有在任何监视器上wait
guarantee (_recursions == 0, "invariant") ;
_recursions = save; // restore the old recursion count
_waiters--; // decrement the number of waiters
// Verify a few postconditions
assert (_owner == Self , "invariant") ;
assert (_succ != Self , "invariant") ;
assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
if (SyncFlags & 32) {
OrderAccess::fence() ;
}
// 如果不是被notify的,检查是否是由中断造成的(中断也会unpark线程),如果是则抛出InterruptedException;否则就是wait超时
// check if the notification happened
if (!WasNotified) { // 注意看调用Thread::is_interrupted时第二个参数是true,会清除线程的中断状态
// no, it could be timeout or Thread.interrupt() or both
// check for interrupt event, otherwise it is timeout
if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
TEVENT (Wait - throw IEX from epilog) ;
THROW(vmSymbols::java_lang_InterruptedException());
}
}
// NOTE: Spurious wake up will be consider as timeout.
// Monitor notify has precedence over thread interrupt.
}
wait函数按以下顺序做了几件事:
- 检查参数线程是否确实持有该监视器,如果不持有则抛出IllegalMonitorStateException;
- 检查是否已经被中断,如果是则抛出InterruptedException;
- 参数线程把自己放入_WaitSet链表末尾,然后调用ObjectMonitor::exit函数放弃该监视器,最后使用ParkEvent的park函数阻塞自己;
- 参数线程被其他notify唤醒之后重新竞争监视器,它先把自己从WaitSet移除,这时它可能在EntryList,也可能在cxq,还可能两者均不在。经过enter或者ReenterI后,参数线程重新获得了该监视器;
- 最后判断如果不是被notify的,检查是否是由中断造成的(中断也会unpark线程),如果是则抛出InterruptedException,同时清除线程的中断状态;否则就是wait超时。
notify函数
notifyAll函数与notify函数相似,只看一下notify函数是如何实现的:
void ObjectMonitor::notify(TRAPS) {
CHECK_OWNER(); // 与wait函数一样的检查_owner
if (_WaitSet == NULL) {
TEVENT (Empty-Notify) ;
return ;
}
DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
int Policy = Knob_MoveNotifyee ; // Knob_MoveNotifyee全局变量,notify策略
Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
ObjectWaiter * iterator = DequeueWaiter() ; // 将WaitSet中的第一个线程出队
if (iterator != NULL) {
TEVENT (Notify1 - Transfer) ;
guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ; // 原来一定是在WaitSet中
guarantee (iterator->_notified == 0, "invariant") ;
if (Policy != 4) {
iterator->TState = ObjectWaiter::TS_ENTER ;
}
iterator->_notified = 1 ; // 告诉被唤醒的线程是被notify唤醒的,因为wait函数末尾还会有判断是不是中断唤醒的
Thread * Self = THREAD;
iterator->_notifier_tid = Self->osthread()->thread_id(); // 告诉被唤醒的线程是谁唤醒的,内核线程ID
ObjectWaiter * List = _EntryList ;
if (List != NULL) {
assert (List->_prev == NULL, "invariant") ;
assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
assert (List != iterator, "invariant") ;
}
if (Policy == 0) { // prepend to EntryList 如果Knob_MoveNotifyee是0,将WaitSet的第一个链接到EntyrList前面
if (List == NULL) {
iterator->_next = iterator->_prev = NULL ;
_EntryList = iterator ;
} else {
List->_prev = iterator ;
iterator->_next = List ;
iterator->_prev = NULL ;
_EntryList = iterator ;
}
} else
if (Policy == 1) { // append to EntryList 如果Knob_MoveNotifyee是1,将WaitSet的第一个链接到EntyrList后面
if (List == NULL) {
iterator->_next = iterator->_prev = NULL ;
_EntryList = iterator ;
} else {
// CONSIDER: finding the tail currently requires a linear-time walk of
// the EntryList. We can make tail access constant-time by converting to
// a CDLL instead of using our current DLL.
ObjectWaiter * Tail ;
for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
Tail->_next = iterator ;
iterator->_prev = Tail ;
iterator->_next = NULL ;
}
} else
if (Policy == 2) { // prepend to cxq 如果Knob_MoveNotifyee是2,将WaitSet的第一个链接到cxq前面
// prepend to cxq
if (List == NULL) {
iterator->_next = iterator->_prev = NULL ;
_EntryList = iterator ;
} else {
iterator->TState = ObjectWaiter::TS_CXQ ;
for (;;) {
ObjectWaiter * Front = _cxq ;
iterator->_next = Front ;
if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
break ;
}
}
}
} else
if (Policy == 3) { // append to cxq 如果Knob_MoveNotifyee是3,将WaitSet的第一个链接到cxq后面
iterator->TState = ObjectWaiter::TS_CXQ ;
for (;;) {
ObjectWaiter * Tail ;
Tail = _cxq ;
if (Tail == NULL) {
iterator->_next = NULL ;
if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
break ;
}
} else {
while (Tail->_next != NULL) Tail = Tail->_next ;
Tail->_next = iterator ;
iterator->_prev = Tail ;
iterator->_next = NULL ;
break ;
}
}
} else { // 其他情况,直接唤醒WaitSet的第一个线程使其运行,不加入EntryList或cxq
ParkEvent * ev = iterator->_event ;
iterator->TState = ObjectWaiter::TS_RUN ;
OrderAccess::fence() ;
ev->unpark() ;
}
if (Policy < 4) {
iterator->wait_reenter_begin(this);
}
// _WaitSetLock protects the wait queue, not the EntryList. We could
// move the add-to-EntryList operation, above, outside the critical section
// protected by _WaitSetLock. In practice that's not useful. With the
// exception of wait() timeouts and interrupts the monitor owner
// is the only thread that grabs _WaitSetLock. There's almost no contention
// on _WaitSetLock so it's not profitable to reduce the length of the
// critical section.
}
Thread::SpinRelease (&_WaitSetLock) ;
if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
ObjectMonitor::_sync_Notifications->inc() ;
}
}
- 执行与wait函数一样的检查_owner等工作;
- 将WaitSet中的第一个线程出队,根据Knob_MoveNotifyee的不同值做不同的处理:
- Knob_MoveNotifyee是0时,将WaitSet的第一个线程链接到EntyrList前面;
- Knob_MoveNotifyee是1时,将WaitSet的第一个线程链接到EntryList后面;
- Knob_MoveNotifyee是2时,将WaitSet的第一个线程链接到cxq前面;
- Knob_MoveNotifyee是3时,将WaitSet的第一个线程链接到cxq后面;
- 其他情况,直接唤醒WaitSet的第一个线程使其运行,不加入EntryList或cxq。
监视器原理图
目前,较为常见的监视器原理图如下,我暂时没有找到这张图的原始出处。
monitor.png
经过这一系列文章的分析,上图Entry Set和Wait Set的含义逐渐清晰,但不知为何没有cxq。
- Wait Set:线程调用wait方法后即进入Wait Set,若后续被唤醒后没有获取到监视器则进入Entry Set;
- Entry Set:竞争监视器失败的线程都在Entry Set阻塞。
网友评论