美文网首页深度学习研究所
Gaussian Attention代码实例

Gaussian Attention代码实例

作者: 西方失败9527 | 来源:发表于2018-07-25 10:23 被阅读0次

Windows本地安装sonnet失败,所以只试验了Gaussian Attention,Spatial Transformer可用sonnet实现,只是sonnet安装失败。

import tensorflowas tf

#import sonnet as snt

import numpyas np

import matplotlib.pyplotas plt

def gaussian_mask(u, s, d, R, C):

    """

:param u: tf.Tensor, centre of the first Gaussian.

:param s: tf.Tensor, standard deviation of Gaussians.

:param d: tf.Tensor, shift between Gaussian centres.

:param R: int, number of rows in the mask, there is one Gaussian per row.

:param C: int, number of columns in the mask.

"""

# indices to create centres

    R= tf.to_float(tf.reshape(tf.range(R), (1, 1, R)))

    C= tf.to_float(tf.reshape(tf.range(C), (1, C, 1)))

    centres= u[np.newaxis, :, np.newaxis]+ R * d

    column_centres= C - centres

    mask= tf.exp(-.5 * tf.square(column_centres/ s))

    # we add eps for numerical stability

    normalised_mask= mask/ (tf.reduce_sum(mask, 1, keep_dims=True)+ 1e-8)

return normalised_mask

def gaussian_glimpse(img_tensor, transform_params, crop_size):

    """

  :param img_tensor: tf.Tensor of size (batch_size, Height, Width, channels)

  :param transform_params: tf.Tensor of size (batch_size, 6), where params are  (mean_y,  std_y,   d_y, mean_x, std_x, d_x) specified in pixels.

   :param crop_size): tuple of 2 ints, size of the resulting crop

   """

    # parse arguments

    h, w= crop_size

    H, W= img_tensor.shape.as_list()[1:3]

    split_ax= transform_params.shape.ndims-1

    uy, sy, dy, ux, sx, dx= tf.split(transform_params, 6, split_ax)

    # create Gaussian masks, one for each axis

    Ay= gaussian_mask(uy, sy, dy, h, H)

    Ax= gaussian_mask(ux, sx, dx, w, W)

    # extract glimpse

     glimpse= tf.matmul(tf.matmul(Ay, img_tensor, adjoint_a=True), Ax)

return glimpse

img_size= 10, 10

glimpse_size= 5, 5

# Create a random image with a square

x= abs(np.random.randn(1, *img_size))* .3

x[0, 3:6, 3:6]= 1

crop= x[0, 1:8, 1:8]# contains the square

tf.reset_default_graph()

# placeholders

tx= tf.placeholder(tf.float32, x.shape, 'image')

tu= tf.placeholder(tf.float32, [1], 'u')

ts= tf.placeholder(tf.float32, [1], 's')

td= tf.placeholder(tf.float32, [1], 'd')

stn_params= tf.placeholder(tf.float32, [1, 4], 'stn_params')

# Gaussian Attention

gaussian_att_params= tf.concat([tu, ts, td, tu, ts, td], -1)

gaussian_glimpse_expr= gaussian_glimpse(tx, gaussian_att_params, glimpse_size)

# Spatial Transformer

#stn_glimpse_expr = spatial_transformer(tx, stn_params, glimpse_size)

sess= tf.Session()

# extract a Gaussian glimpse

u= 2

s= .5

d= 1

u, s, d= (np.asarray([i])for iin (u, s, d))

gaussian_crop= sess.run(gaussian_glimpse_expr, feed_dict={tx: x, tu: u, ts: s, td: d})

# extract STN glimpse

# transform = [.4, -.1, .4, -.1]

# transform = np.asarray(transform).reshape((1, 4))

# stn_crop = sess.run(stn_glimpse_expr, {tx: x, stn_params: transform})

# plots

fig, axes= plt.subplots(1, 3, figsize=(12, 3))

titles= ['Input Image', 'Crop', 'Gaussian Att']#, 'STN']

imgs= [x, crop, gaussian_crop]#, stn_crop]

for ax, title, imgin zip(axes, titles, imgs):

     ax.imshow(img.squeeze(), cmap='gray', vmin=0., vmax=1.)

      ax.set_title(title)

      ax.xaxis.set_visible(False)

      ax.yaxis.set_visible(False)

plt.show()

相关文章

网友评论

    本文标题:Gaussian Attention代码实例

    本文链接:https://www.haomeiwen.com/subject/wygumftx.html