美文网首页厦门市房价预测系统
房价数据转换和清洗2

房价数据转换和清洗2

作者: 潇洒坤 | 来源:发表于2018-06-27 09:40 被阅读31次

1.下载厦门房价信息源文件

下载链接:https://pan.baidu.com/s/16D5hw-XBEQnwtsf4fDJ8xw 密码:e1fg

2.编写代码

1.原来的数据总共有15列:分别为:标题title、价格price、首付downPayment、户型sizeType、面积size、单价unitPrice、朝向orientation、楼层floor、装修decoration、社区community、区域region、学校school、房屋详情houseDetail、核心卖点keySellingPoint、配套设施equipment
2.进行简单的房价预测不需要用到文本识别和语义分析,因此不需要用到title、
keySellingPoint、equipment,根据现实的情况来说因为先有单价才有总房价,
而进行预测的正是单价,所以用不到price、downPayment。观察房屋详情,发现
其中的数据有错误,有的20多层的楼房却显示没有电梯,这不符合高层住房电梯
规定,7层及以上住房必须安装电梯,不符合实际,所有房产有无电梯根据总楼层数判断
3.根据房屋的层数区分低层住宅、多层住宅、小高层住宅、高层住宅等类别
4.根据房屋的建造年代区分5年以内建造、6-10年前建造、11-15年前建造等类别
5.根据房屋所在行政区划分思明、集美、湖里、海沧、翔安、同安6个类别
6.根据房屋所在区域划分思北、莲花、厦大、中山路等类别

import pandas as pd
import re
import time
import json

def getSizeType(df):
    def findNumber(reStr,sourceStr):
        result_list = re.findall(reStr,sourceStr)
        if len(result_list):
            return result_list[0]
        else:
            return 0
    sizeType_list = []
    for i in range(len(df)):
        sizeType = df['sizeType'].iloc[i]
        sizeType_dict = dict(
            room = findNumber('([0-9]*)室',sizeType),
            hall = findNumber('([0-9]*)厅',sizeType),
            restroom =findNumber('([0-9]*)卫',sizeType)
        ) 
        sizeType_list.append(sizeType_dict)
    return pd.DataFrame(sizeType_list,columns=sizeType_list[0].keys())

def getPrice(df):
    df1 = df['price'].copy()
    for i in range(len(df1)):
        df1.iloc[i] = df1.iloc[i].strip("万")
    return df1

def getSize(df):
    df1 = df['size'].copy()
    for i in range(len(df1)):
        df1.iloc[i] = df1.iloc[i].strip("平米")
    return df1

def getElevator(df):
    ele_list = []
    for i in range(len(df)):
        str1 = df['floor'].iloc[i].split(' ')[1]
        allFloor = int(re.findall("共(.*)层",str1)[0])
        elevator = 1 if allFloor >= 8 else 0
        ele_dict = {'elevator':elevator}
        ele_list.append(ele_dict)
    df1 = pd.DataFrame(ele_list)
    return df1

def getSchool(df):
    df1 = df['school'].copy()
    for i in range(len(df1)):
        df1.iloc[i] = 1 if df['school'].iloc[i] == \
        df['school'].iloc[i] else 0
    return df1

def getHeightType(df):
    df1 = df['floor'].copy()
    heightType = ["低层住宅(1-3层)","多层住宅(4-7层)","小高层住宅(8-16层)",\
                  "中高层住宅(17-25层)","高层住宅(26-40层)","超高层住宅(40层以上)"]
    for i in range(len(df1)):
        str1 = df1.iloc[i].split(' ')[1]
        allFloor = int(re.findall("共(.*)层",str1)[0])
        if allFloor < 4:
            df1.iloc[i] = heightType[0]
        elif allFloor < 8:
            df1.iloc[i] = heightType[1]
        elif allFloor < 17:
            df1.iloc[i] = heightType[2]
        elif allFloor < 26:
            df1.iloc[i] = heightType[3]
        elif allFloor < 41:
            df1.iloc[i] = heightType[4]
        else:
            df1.iloc[i] = heightType[5]
    return pd.get_dummies(df1)

def getBuildTime(df):
    df1 = df['houseDetail'].copy()
    year_now = 2018
    for i in range(len(df1)):
        details = json.loads(df1.iloc[i])
        if '建筑年代' in details:
            year_build = int(details['建筑年代'].strip('年'))
        else:
            year_build = 2010
        year_diff = year_now - year_build
        if year_diff < 5:
            df1.iloc[i] = '5年以内建造'
        elif year_diff < 10:
            df1.iloc[i] = '6-10年前建造'
        elif year_diff < 15:
            df1.iloc[i] = '11-15年前建造'
        elif year_diff < 20:
            df1.iloc[i] = '16-20年前建造'
        else:
            df1.iloc[i] = '超过20年前建造'
    return pd.get_dummies(df1)
            
def getOrientation(df):
    return pd.get_dummies(df['orientation'])

def getHeight(df):
    df1 = df['floor'].copy()
    for i in range(len(df)):
        df1.iloc[i] = df['floor'].iloc[i].split(' ')[0][0]
    return pd.get_dummies(df1)

def getDecoration(df):
    df1 = df['decoration'].copy()
    for i in range(len(df)):
        df1.iloc[i] = df['decoration'].iloc[i].strip('修')
    return pd.get_dummies(df1)

def getDistrict(df):
    df1 = df['region'].copy()
    for i in range(len(df)):
        df1.iloc[i] = df['region'].iloc[i].split('-')[0]
    return pd.get_dummies(df1)

def getRegion(df):
    df1 = df['region'].copy()
    for i in range(len(df)):
        region = df['region'].iloc[i].split('-')[1]
        df1.iloc[i] = region.strip('(').strip(')')
    return pd.get_dummies(df1)
    
def cleanFloor(df):
    for i in range(len(df)):
        if '共' not in df['floor'].loc[i]:
            df = df.drop([i])
    df = df.reset_index(drop=True)
    return df

def cleanSizeType(df):
    for i in range(len(df)):
        if '室' not in df['sizeType'].loc[i]:
            df = df.drop([i])
    df = df.reset_index(drop=True)
    return df

def cleanCommunity(df):
    df = df[df['community'] == df['community']]
    df = df.reset_index(drop=True)
    return df

def cleanDecoration(df):
    for i in range(len(df)):
        if df['decoration'].loc[i].strip() == '暂无':
            df = df.drop([i])
    df = df.reset_index(drop=True)
    return df

def cleanOrientation(df):
    for i in range(len(df)):
        if df['orientation'].loc[i].strip() == '暂无':
            df = df.drop([i])
    df = df.reset_index(drop=True)
    return df 

if __name__ == "__main__":
    startTime = time.time()
    df = pd.read_excel("厦门房价数据(房天下版).xlsx")
    df = cleanCommunity(df)
    df = cleanFloor(df)
    df = cleanSizeType(df)
    df = cleanDecoration(df)
    df = cleanOrientation(df)
    df = df.drop_duplicates().reset_index(drop=True)
    #下面几个字段是列数较少的字段
    price = getPrice(df)
    size = getSize(df)
    sizeType = getSizeType(df)
    elevator = getElevator(df)
    school = getSchool(df)
    #下面的字段是通过get_dummies方法产生的9-1矩阵,列数较多
    heightType = getHeightType(df)
    buildTime = getBuildTime(df)
    orientaion = getOrientation(df)
    height = getHeight(df)
    decoration = getDecoration(df)
    district = getDistrict(df)
    region = getRegion(df)

    df_new = pd.concat([price,size,sizeType,elevator,school,heightType,\
                        buildTime,orientaion,height,decoration,\
                        district,region],axis=1)

    df_new.to_excel("厦门房价数据处理结果2.xlsx",columns = df_new.iloc[0].keys())
    print("数据处理共花费%.2f秒" %(time.time()-startTime))   

3.数据处理结果截图


处理结果截图.png

从上图中可以看出房屋分类可以分为81个区域,10个房屋朝向,5个装修程度。产生的新DataFrame为df_new变量,共有21502行,123列。123列中有1列为房价,为需要预测的数据,有122列为输入变量。

相关文章

  • 房价数据转换和清洗2

    1.下载厦门房价信息源文件 下载链接:https://pan.baidu.com/s/16D5hw-XBEQnwt...

  • 房价数据转换和清洗

    1.下载厦门房价信息源文件 下载链接:https://pan.baidu.com/s/16D5hw-XBEQnwt...

  • 04 数据清洗和转换

    大部分机器学习模型处理的都是特征,是实际工作中最耗时的一部分。大部分情况下,收集到的数据需要经过预处理后才能被后续...

  • BI项目中的ETL设计详解(数据抽取、清洗与转换)

    BI项目中的ETL设计详解(数据抽取、清洗与转换 ) ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库...

  • 大数据开发:大数据预处理架构和方法简介

    数据预处理主要包括数据清洗(Data Cleaning)、数据集成(Data Integration)、数据转换(...

  • 【R for Data Science】(1) readr和ti

    学习数据整形(wrangle),包括数据输入(import),数据清洗(tidy)和数据转换(transform)...

  • 泰坦尼克-kaggle

    1.导入数据 2.可视化数据 3.清洗、转换数据 4.对数据编码 5.拆分训练集和测试集 6.进行学习 7.验证 ...

  • python数据分析与挖掘实战笔记

    第四章,数据预处理: 1, 数据预处理的过程主要包括:数据清洗,数据集成,数据转换和数据规约。 2,牛顿插值法: ...

  • excel函数

    (一) 清洗处理类 主要是文本、格式以及脏数据的清洗和转换。很多数据并不是直接拿来就能用的,需要经过数据分析人员的...

  • Excel常用函数

    清洗处理类 主要是文本、格式以及脏数据的清洗和转换。很多数据并不是直接拿来就能用的,需要经过数据分析人员的清理。数...

网友评论

    本文标题:房价数据转换和清洗2

    本文链接:https://www.haomeiwen.com/subject/wynvyftx.html