了解连通图生成树
一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。 [1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。
所谓⼀个连通图的⽣成树是一个极⼩的连通子图,它含有图中全部的n个顶点,但只足以构成一颗树的n-1条边
连通图的生成树的判断
连通图生成树的三个条件
满⾜足以下3个条件则为连通图的⽣生成树:
• 图是连通图;
• 图中包含了了N个顶点;
• 图中边的数量量等于N-1条边.
最小生成树问题解析
最⼩生成树: 把构成连通⽹网的最⼩代价的生成树称为最⼩生成树
prim算法适合稠密图,kruskal算法适合简单图
我们通过一道阿里的算法面试题分析:
设计一个最小成本的⽹网络布线路线
- 先把所有的顶点和顶点之间的边用邻接矩阵存储,顶点与顶点之间有连接的存储权值,没有存储一个无穷大的值
会发现因为是无向图,所以所有的的权值是以主对角线对称
2.将与V0 相关的V1~V8 的所有顶 点赋值对应的权值;
并且把arjvex[1~8]都赋值为0. 表示都是与顶点V0 相关的顶 点.
序号 | ------------------- 图 ------------------ | 可选择的路线(所有可以选择的路线) | 最终选择的路线(根据权值的大小) |
---|---|---|---|
1 | V1 、V5 | V1 权值:10 | |
2 | V2 、V8、V5 、V6 | V5权值:11 | |
3 | V2 、V3、V7 、V6 、V4 | V8权值:12 | |
4 | V2 、V3、V4 、V6 | V2权值:8 | |
5 | V1、V7 、V6 | V6权值:16 | |
6 | V1 、V3、V7 、V5 18和17 不能走如果走了这两条路的话 ,会形成闭环 | V7权值:19 | |
7 | V4 、V3、 | V4权值:7 | |
8 | V4 、V3、 | V3权值:16 |
最小生成树Prim算法解析与实现
普里姆(Prim)算法思路
- 定义2个数组; adjvex ⽤用来保存相关顶点下标; lowcost 保存顶点之间的权值
- 初始化2个数组, 从v0开始寻找最⼩小⽣生成树, 默认v0是最⼩小⽣生成树上第一个顶点 3. 循环lowcost 数组,根据权值,找到顶点 k;
- 更更新lowcost 数组
- 循环所有顶点,找到与顶点k 有关系的顶点. 并更更新lowcost 数组与adjvex 数组;
注意:
更更新lowcost 数组与adjvex 数组的条件: - 与顶点k 之间有连接
- 当前结点 j 没有加⼊入过最⼩小⽣生成树;
- 顶点 k 与 当前顶点 j 之间的权值 ⼩小于 顶点j 与其他顶点 k 之前的权值. 则更更新. 简单说就是要⽐比较之前存储的值要⼩小,则更更新;
普里姆(Prim)算法执行过程
序号 | 数组变化前 | 数组变化前 |
---|---|---|
第1次执行 | ||
第2次执行 | ||
第3次执行 | ||
第4次执行 | ||
第5次执行 | ||
第6次执行 | ||
第7次执行 | ||
8次执行 |
代码逻辑实现
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 20
#define MAXVEX 20
#define INFINITYC 65535
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef struct
{
int arc[MAXVEX][MAXVEX];
int numVertexes, numEdges;
}MGraph;
/*9.1 创建邻接矩阵*/
void CreateMGraph(MGraph *G)/* 构件图 */
{
int i, j;
/* printf("请输入边数和顶点数:"); */
G->numEdges=15;
G->numVertexes=9;
for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
{
for ( j = 0; j < G->numVertexes; j++)
{
if (i==j)
G->arc[i][j]=0;
else
G->arc[i][j] = G->arc[j][i] = INFINITYC;
}
}
G->arc[0][1]=10;
G->arc[0][5]=11;
G->arc[1][2]=18;
G->arc[1][8]=12;
G->arc[1][6]=16;
G->arc[2][8]=8;
G->arc[2][3]=22;
G->arc[3][8]=21;
G->arc[3][6]=24;
G->arc[3][7]=16;
G->arc[3][4]=20;
G->arc[4][7]=7;
G->arc[4][5]=26;
G->arc[5][6]=17;
G->arc[6][7]=19;
for(i = 0; i < G->numVertexes; i++)
{
for(j = i; j < G->numVertexes; j++)
{
G->arc[j][i] =G->arc[i][j];
}
}
}
/* Prim算法生成最小生成树 */
void MiniSpanTree_Prim(MGraph G)
{
int min, i, j, k;
int sum = 0;
/* 保存相关顶点下标 */
int adjvex[MAXVEX];
/* 保存相关顶点间边的权值 */
int lowcost[MAXVEX];
/* 初始化第一个权值为0,即v0加入生成树 */
/* lowcost的值为0,在这里就是此下标的顶点已经加入生成树 */
lowcost[0] = 0;
/* 初始化第一个顶点下标为0 */
adjvex[0] = 0;
//1. 初始化
for(i = 1; i < G.numVertexes; i++) /* 循环除下标为0外的全部顶点 */
{
lowcost[i] = G.arc[0][i]; /* 将v0顶点与之有边的权值存入数组 */
adjvex[i] = 0; /* 初始化都为v0的下标 */
}
//2. 循环除了下标为0以外的全部顶点, 找到lowcost数组中最小的顶点k
for(i = 1; i < G.numVertexes; i++)
{
/* 初始化最小权值为∞, */
/* 通常设置为不可能的大数字如32767、65535等 */
min = INFINITYC;
j = 1;k = 0;
while(j < G.numVertexes) /* 循环全部顶点 */
{
/* 如果权值不为0且权值小于min */
if(lowcost[j]!=0 && lowcost[j] < min)
{
/* 则让当前权值成为最小值,更新min */
min = lowcost[j];
/* 将当前最小值的下标存入k */
k = j;
}
j++;
}
/* 打印当前顶点边中权值最小的边 */
printf("(V%d, V%d)=%d\n", adjvex[k], k ,G.arc[adjvex[k]][k]);
sum+=G.arc[adjvex[k]][k];
/* 3.将当前顶点的权值设置为0,表示此顶点已经完成任务 */
lowcost[k] = 0;
/* 循环所有顶点,找到与顶点k 相连接的顶点
1. 与顶点k 之间连接;
2. 该结点没有被加入到生成树;
3. 顶点k 与 顶点j 之间的权值 < 顶点j 与其他顶点的权值,则更新lowcost 数组;
*/
for(j = 1; j < G.numVertexes; j++)
{
/* 如果下标为k顶点各边权值小于此前这些顶点未被加入生成树权值 */
if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j])
{
/* 将较小的权值存入lowcost相应位置 */
lowcost[j] = G.arc[k][j];
/* 将下标为k的顶点存入adjvex */
adjvex[j] = k;
}
}
}
printf("sum = %d\n",sum);
}
int main(void)
{
printf("Hello,最小生成树_Prim算法\n");
MGraph G;
CreateMGraph(&G);
MiniSpanTree_Prim(G);
return 0;
}
最小生成树 Kruskal算法分析与实现
克鲁斯卡尔算法的基本思想是以边为主导地位,始终选择当前可用的最小边权的边(可以直接快排或者algorithm的sort)。每次选择边权最小的边链接两个端点是kruskal的规则,并实时判断两个点之间有没有间接联通。
克鲁斯卡尔(Kruskal)算法思路
- 将邻接矩阵 转化成 边表数组;
- 对边表数组根据权值按照从⼩到大的顺序排序;
- 遍历所有的边, 通过parent 数组找到边的连接信息; 避免闭环问题;
-
如果不存在闭环问题,则加入到最⼩生成树中. 并且修改parent 数组’
Kruskal算法执行过程
最小生成树循环次数 | 数组变化前 | 数组变化前 |
---|---|---|
第1次执行 | ||
第2次执行 | ||
第3次执行 | ||
第4次执行 | ||
第5次执行 | ||
第6次执行 | ||
第7次执行 | ||
分析 | ||
第8次执行 | ||
第9次执行 | ||
第10次执行 | ||
第11次执行 | ||
第12次执行 | ||
第13次执行 | ||
第14次执行 | ||
第15次执行 |
代码实现逻辑
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 20
#define MAXVEX 20
#define INFINITYC 65535
typedef int Status;
typedef struct
{
int arc[MAXVEX][MAXVEX];
int numVertexes, numEdges;
}MGraph;
/* 对边集数组Edge结构的定义 */
typedef struct
{
int begin;
int end;
int weight;
}Edge ;
/*9.1 创建邻接矩阵*/
void CreateMGraph(MGraph *G)
{
int i, j;
/* printf("请输入边数和顶点数:"); */
G->numEdges=15;
G->numVertexes=9;
for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
{
for ( j = 0; j < G->numVertexes; j++)
{
if (i==j)
G->arc[i][j]=0;
else
G->arc[i][j] = G->arc[j][i] = INFINITYC;
}
}
G->arc[0][1]=10;
G->arc[0][5]=11;
G->arc[1][2]=18;
G->arc[1][8]=12;
G->arc[1][6]=16;
G->arc[2][8]=8;
G->arc[2][3]=22;
G->arc[3][8]=21;
G->arc[3][6]=24;
G->arc[3][7]=16;
G->arc[3][4]=20;
G->arc[4][7]=7;
G->arc[4][5]=26;
G->arc[5][6]=17;
G->arc[6][7]=19;
for(i = 0; i < G->numVertexes; i++)
{
for(j = i; j < G->numVertexes; j++)
{
G->arc[j][i] =G->arc[i][j];
}
}
}
/* 交换权值以及头和尾 */
void Swapn(Edge *edges,int i, int j)
{
int tempValue;
//交换edges[i].begin 和 edges[j].begin 的值
tempValue = edges[i].begin;
edges[i].begin = edges[j].begin;
edges[j].begin = tempValue;
//交换edges[i].end 和 edges[j].end 的值
tempValue = edges[i].end;
edges[i].end = edges[j].end;
edges[j].end = tempValue;
//交换edges[i].weight 和 edges[j].weight 的值
tempValue = edges[i].weight;
edges[i].weight = edges[j].weight;
edges[j].weight = tempValue;
}
/* 对权值进行排序 */
void sort(Edge edges[],MGraph *G)
{
//对权值进行排序(从小到大)
int i, j;
for ( i = 0; i < G->numEdges; i++)
{
for ( j = i + 1; j < G->numEdges; j++)
{
if (edges[i].weight > edges[j].weight)
{
Swapn(edges, i, j);
}
}
}
printf("边集数组根据权值排序之后的为:\n");
for (i = 0; i < G->numEdges; i++)
{
printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
}
}
/* 查找连线顶点的尾部下标 */
//根据顶点f以及parent 数组,可以找到当前顶点的尾部下标; 帮助我们判断2点之间是否存在闭环问题;
int Find(int *parent, int f)
{
while ( parent[f] > 0)
{
f = parent[f];
}
return f;
}
/* 生成最小生成树 */
void MiniSpanTree_Kruskal(MGraph G)
{
int i, j, n, m;
int sum = 0;
int k = 0;
/* 定义一数组用来判断边与边是否形成环路
用来记录顶点间的连接关系. 通过它来防止最小生成树产生闭环;*/
int parent[MAXVEX];
/* 定义边集数组,edge的结构为begin,end,weight,均为整型 */
Edge edges[MAXEDGE];
/*1. 用来构建边集数组*/
for ( i = 0; i < G.numVertexes-1; i++)
{
for (j = i + 1; j < G.numVertexes; j++)
{
//如果当前路径权值 != ∞
if (G.arc[i][j]<INFINITYC)
{
//将路径对应的begin,end,weight 存储到edges 边集数组中.
edges[k].begin = i;
edges[k].end = j;
edges[k].weight = G.arc[i][j];
//边集数组计算器k++;
k++;
}
}
}
//2. 对边集数组排序
sort(edges, &G);
//3.初始化parent 数组为0. 9个顶点;
// for (i = 0; i < G.numVertexes; i++)
for (i = 0; i < MAXVEX; i++)
parent[i] = 0;
//4. 计算最小生成树
printf("打印最小生成树:\n");
/* 循环每一条边 G.numEdges 有15条边*/
for (i = 0; i < G.numEdges; i++)
{
//获取begin,end 在parent 数组中的信息;
//如果n = m ,将begin 和 end 连接,就会产生闭合的环.
n = Find(parent,edges[i].begin);
m = Find(parent,edges[i].end);
//printf("n = %d,m = %d\n",n,m);
/* 假如n与m不等,说明此边没有与现有的生成树形成环路 */
if (n != m)
{
/* 将此边的结尾顶点放入下标为起点的parent中。 */
/* 表示此顶点已经在生成树集合中 */
parent[n] = m;
/*打印最小生成树路径*/
printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
sum += edges[i].weight;
}
}
printf("sum = %d\n",sum);
}
int main(int argc, const char * argv[]) {
printf("Hello,最小生成树_Kruskal算法\n");
MGraph G;
CreateMGraph(&G);
MiniSpanTree_Kruskal(G);
return 0;
}
•
网友评论