美文网首页
mysql海量数据分页查询优化

mysql海量数据分页查询优化

作者: java金融 | 来源:发表于2020-07-25 20:51 被阅读0次

背景

一般我们数据量大的时候,然后就需要进行分页,一般分页语句就是limit offset,rows。这种分页数据量小的时候是没啥影响的,一旦数据量越来越大随着offset的变大,性能就会越来越差。下面我们就来实验下:

准备数据

  • 建一个测试表引擎为MyISAM(插入数据没有事务提交,插入速度快)的表。
​
CREATE TABLE USER (
id INT ( 20 ) NOT NULL auto_increment,
NAME VARCHAR ( 20 ) NOT NULL,
address VARCHAR ( 20 ) NOT NULL,
PRIMARY KEY ( id ) 
) ENGINE = MyISAM;​
  • 写一个批量插入的存储过程
delimiter //
# 删除表数据
TRUNCATE TABLE t;
# 如果已经有sp_test_batch存储过程,将其删除,后面重新创建
DROP PROCEDURE IF EXISTS sp_test_batch;
# 创建存储过程,包含num和batch输入,num表示插入的总行数,batch表示每次插入的行数
CREATE PROCEDURE sp_test_batch(IN num INT,IN batch INT)
BEGIN
    SET @insert_value = '';
    # 已经插入的记录总行数
  SET @count = 0;
    # 
    SET @batch_count = 0;
    WHILE @count < num DO
        # 内while循环用于拼接INSERT INTO t VALUES (),(),(),...语句中VALUES后面部分
        WHILE (@batch_count < batch AND @count < num) DO
            IF @batch_count>0
            THEN 
                SET @insert_value = concat(@insert_value,',');
            END IF;
            SET @insert_value = concat(@insert_value,"('name", @count, "','address", @count, "')");
            SET @batch_count = @batch_count+1;  
        END WHILE;
 
        SET @count = @count + @batch_count;
        # 拼接SQL语句并执行
        SET @exesql = concat("insert into user(name,address) values ", @insert_value);  
        PREPARE stmt FROM @exesql;
        EXECUTE stmt;
        DEALLOCATE PREPARE stmt;
        # 重置变量值
        SET @insert_value = '';
        SET @batch_count=0;
    END WHILE;
    # 数据插入完成后,查看表中总记录数
    SELECT COUNT(id) FROM user;
END
  • 插入100w数据

测试性能

下面我们分别针对于offset等于不同的值来进行实验:

  • offset等于10000时耗时

    在这里插入图片描述
  • offset等于100000时耗时:

    在这里插入图片描述
  • offset等于1000000时耗时

    在这里插入图片描述
  • offset等于5000000时耗时

    在这里插入图片描述
  • offset等于10000000时耗时

    在这里插入图片描述
    从上图可以得出随着offset的值越大耗时就越来越多。这还只是1000w数据,如果我们上亿数据呢,可想而知这时候查询的效率有多差。下面我们来进行优化。

性能优化

子查询的分页方式:

在这里插入图片描述
在这里插入图片描述
SELECT * FROM user WHERE  id >=  
(SELECT id FROM user  ORDER BY id LIMIT 9000000, 1) LIMIT 10
从图可以得出子查询确实速度快了一倍。

JOIN分页方式:

SELECT * FROM user t1 INNER join
(SELECT id FROM user  ORDER BY id LIMIT 9000000, 10) t2 on t2.id =t1.id
在这里插入图片描述
  • join的方式比子查询性能在稍微好点。

依赖当前页ID优化:

这个时间性能是最好的。这种优化必须要依赖前一次的查询的最大ID,如果是那种分页直接可以指定多少页的是不行的,必须是只能后一页,后一页这么点击。

SELECT id FROM user  where id > 9000000 ORDER BY id  LIMIT 10;
在这里插入图片描述

终极优化

  • 通过伪列对ID进行分页,可以多线程同时查询,这个适合分页把全量数据加载到缓存。
  • 得到ID的范围
    ​​ 在这里插入图片描述
select id from(
SELECT @rownum:=@rownum+1 AS rownum, id FROM   user as t1 ,(SELECT @rownum:=0) t2 order
by t1.id asc
) t3 where t3.rownum%5000=0

多个线程执行不同的sql

select * from user where id >0 and id<=5000 一直到最大的id

结束

  • 由于自己才疏学浅,难免会有纰漏,假如你发现了错误的地方,还望留言给我指出来,我会对其加以修正。
  • 如果你觉得文章还不错,你的转发、分享、赞赏、点赞、留言就是对我最大的鼓励。
  • 感谢您的阅读,十分欢迎并感谢您的关注。

​​​​

相关文章

网友评论

      本文标题:mysql海量数据分页查询优化

      本文链接:https://www.haomeiwen.com/subject/xcnmlktx.html