《从0到1学习spark》-- RDD

作者: 小强的进阶之路 | 来源:发表于2019-01-14 15:03 被阅读1次

RDD如何产生

RDD是Spark的基石,是实现Spark数据处理的核心抽象。那么RDD为什么会产生呢?

Hadoop的MapReduce是一种基于数据集的工作模式,面向数据,这种工作模式一般是从存储上加载数据集,然后操作数据集,最后写入物理存储设备。数据更多面临的是一次性处理。

MR的这种方式对数据领域两种常见的操作不是很高效。第一种是迭代式的算法。比如机器学习中ALS、凸优化梯度下降等。这些都需要基于数据集或者数据集的衍生数据反复查询反复操作。MR这种模式不太合适,即使多MR串行处理,性能和时间也是一个问题。数据的共享依赖于磁盘。另外一种是交互式数据挖掘,MR显然不擅长。

MR中的迭代:

MR迭代

Spark中的迭代:

spark迭代

我们需要一个效率非常快,且能够支持迭代计算和有效数据共享的模型,Spark应运而生。RDD是基于工作集的工作模式,更多的是面向工作流。

但是无论是MR还是RDD都应该具有类似位置感知、容错和负载均衡等特性。

RDD是什么

RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。在 Spark 中,对数据的所有操作不外乎创建 RDD、转化已有RDD 以及调用 RDD 操作进行求值。每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上。RDD 可以包含 Python、Java、Scala 中任意类型的对象, 甚至可以包含用户自定义的对象。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。

RDD支持两种操作:转化操作和行动操作。RDD 的转化操作是返回一个新的 RDD的操作,比如 map()和 filter(),而行动操作则是向驱动器程序返回结果或把结果写入外部系统的操作。比如 count() 和 first()。

Spark采用惰性计算模式,RDD只有第一次在一个行动操作中用到时,才会真正计算。Spark可以优化整个计算过程。默认情况下,Spark 的 RDD 会在你每次对它们进行行动操作时重新计算。如果想在多个行动操作中重用同一个 RDD,可以使用 RDD.persist() 让 Spark 把这个 RDD 缓存下来。

RDD的基本属性

首先来看一下官方的描述:

官方描述
  1. 一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。

  2. 一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

  3. RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

  4. 一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。

  5. 一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。

小结

RDD是一个应用层面的逻辑概念。一个RDD多个分片。RDD就是一个元数据记录集,记录了RDD内存所有的关系数据。

相关文章

网友评论

    本文标题:《从0到1学习spark》-- RDD

    本文链接:https://www.haomeiwen.com/subject/xezddqtx.html