https://blog.csdn.net/lyq_12/article/details/83780932
在讲解协方差之前,我们先一起回忆一下样本的均值、方差、标准差的定义。
方差,协方差和协方差矩阵
1、概念
方差(Variance)是度量一组数据的分散程度。方差是各个样本与样本均值的差的平方和的均值:
协方差(Covariance)是度量两个变量的变动的同步程度,也就是度量两个变量线性相关性程度。如果两个变量的协方差为0,则统计学上认为二者线性无关。注意两个无关的变量并非完全独立,只是没有线性相关性而已。计算公式如下:
如果协方差大于0表示一个变量增大是另一个变量也会增大,即正相关,协方差小于0表示一个变量增大是另一个变量会减小,即负相关。
协方差矩阵(Covariance matrix)由数据集中两两变量的协方差组成。矩阵的第(i,j)(i,j)个元素是数据集中第ii和第jj个元素的协方差。例如,三维数据的协方差矩阵如下所示:
2、练习
计算下表数据的协方差矩阵:
Python代码如下:
可以由python中的numpy包计算均值和协方差:
import numpy as np
X = [[2, 0, -1.4],
[2.2, 0.2, -1.5],
[2.4, 0.1, -1],
[1.9, 0, -1.2]]
print(np.mean(X,axis=0))
print(np.cov(np.array(X).T))
计算结果如下:
网友评论