美文网首页
Objective-C Category

Objective-C Category

作者: lieon | 来源:发表于2021-02-21 22:36 被阅读0次

Category的底层结构

  • 在objc源码objc-runtime-new.h中可以找到
struct category_t {
    const char *name;
    classref_t cls;
    struct method_list_t *instanceMethods; // 实例方法列表
    struct method_list_t *classMethods; // 类方法列表
    struct protocol_list_t *protocols; // 协议列表
    struct property_list_t *instanceProperties; // 属性列表
    // Fields below this point are not always present on disk.
    struct property_list_t *_classProperties; // 类属性列表

    method_list_t *methodsForMeta(bool isMeta) {
        if (isMeta) return classMethods;
        else return instanceMethods;
    }

    property_list_t *propertiesForMeta(bool isMeta, struct header_info *hi);
};

Category的实现原理

  • Category编译之后的底层结构是 struct Category_t,里面存储着类的对象方法,类方法,属性,协议信息
  • 在程序运行的时候,runtime会将Category的数据,合并到类信息中(类对象、元类对象)
  • Category在编译时,产生的C++源码, 可知,在编译时并没有将LeePerson的分类LeePerson+Eat合并

static struct /*_method_list_t*/ {
    unsigned int entsize;  // sizeof(struct _objc_method)
    unsigned int method_count;
    struct _objc_method method_list[1];
} _OBJC_$_CATEGORY_INSTANCE_METHODS_LeePerson_$_Eat __attribute__ ((used, section ("__DATA,__objc_const"))) = {
    sizeof(_objc_method),
    1,
    {{(struct objc_selector *)"test", "v16@0:8", (void *)_I_LeePerson_Eat_test}}
};

extern "C" __declspec(dllimport) struct _class_t OBJC_CLASS_$_LeePerson;

static struct _category_t _OBJC_$_CATEGORY_LeePerson_$_Eat __attribute__ ((used, section ("__DATA,__objc_const"))) = 
{
    "LeePerson",
    0, // &OBJC_CLASS_$_LeePerson,
    (const struct _method_list_t *)&_OBJC_$_CATEGORY_INSTANCE_METHODS_LeePerson_$_Eat,
    0,
    0,
    0,
};
static void OBJC_CATEGORY_SETUP_$_LeePerson_$_Eat(void ) {
    _OBJC_$_CATEGORY_LeePerson_$_Eat.cls = &OBJC_CLASS_$_LeePerson;
}
#pragma section(".objc_inithooks$B", long, read, write)
__declspec(allocate(".objc_inithooks$B")) static void *OBJC_CATEGORY_SETUP[] = {
    (void *)&OBJC_CATEGORY_SETUP_$_LeePerson_$_Eat,
};
static struct _category_t *L_OBJC_LABEL_CATEGORY_$ [1] __attribute__((used, section ("__DATA, __objc_catlist,regular,no_dead_strip")))= {
    &_OBJC_$_CATEGORY_LeePerson_$_Eat,
};
  • 查看objc的源码,运行时,发生了什么
    • 源码解读顺序
      • objc-os.mm
      • _objc_init
      • map_images
      • map_images_nolock
    • objc-runtime-new.mm
      • _read_images
      • remethodizeClass
      • attachCategories
      • attachLists
      • realloc、memmove、 memcpy
static void remethodizeClass(Class cls)
{
    category_list *cats;
    bool isMeta;

    runtimeLock.assertWriting();

    isMeta = cls->isMetaClass();

    // Re-methodizing: check for more categories
    if ((cats = unattachedCategoriesForClass(cls, false/*not realizing*/))) {
        if (PrintConnecting) {
            _objc_inform("CLASS: attaching categories to class '%s' %s", 
                         cls->nameForLogging(), isMeta ? "(meta)" : "");
        }
        
        attachCategories(cls, cats, true /*flush caches*/);        
        free(cats);
    }
}

static void 
attachCategories(Class cls, category_list *cats, bool flush_caches)
{
    if (!cats) return;
    if (PrintReplacedMethods) printReplacements(cls, cats);

    bool isMeta = cls->isMetaClass();

    // fixme rearrange to remove these intermediate allocations
    method_list_t **mlists = (method_list_t **)
        malloc(cats->count * sizeof(*mlists));
    property_list_t **proplists = (property_list_t **)
        malloc(cats->count * sizeof(*proplists));
    protocol_list_t **protolists = (protocol_list_t **)
        malloc(cats->count * sizeof(*protolists));

    // Count backwards through cats to get newest categories first
    int mcount = 0;
    int propcount = 0;
    int protocount = 0;
    int i = cats->count;
    bool fromBundle = NO;
    while (i--) {
        auto& entry = cats->list[i];
        // 获取到方法列表
        method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
        if (mlist) {
            mlists[mcount++] = mlist;
            fromBundle |= entry.hi->isBundle();
        }
        // 获取属性列表
        property_list_t *proplist = 
            entry.cat->propertiesForMeta(isMeta, entry.hi);
        if (proplist) {
            proplists[propcount++] = proplist;
        }
        // 获取协议列表
        protocol_list_t *protolist = entry.cat->protocols;
        if (protolist) {
            protolists[protocount++] = protolist;
        }
    }

    auto rw = cls->data();

    prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
    // 合并方法列表
    rw->methods.attachLists(mlists, mcount);
    free(mlists);
    if (flush_caches  &&  mcount > 0) flushCaches(cls);
    // 合并属性列表
    rw->properties.attachLists(proplists, propcount);
    free(proplists);
    // 合并协议列表
    rw->protocols.attachLists(protolists, protocount);
    free(protolists);
}

 void attachLists(List* const * addedLists, uint32_t addedCount) {
        if (addedCount == 0) return;

        if (hasArray()) {
            // many lists -> many lists
            // 获取合并之前列表的数量
            uint32_t oldCount = array()->count;
            //  获取合并之后列表的数量
            uint32_t newCount = oldCount + addedCount;
            // 重新分配内存
            setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
            // 设置新的列表数量
            array()->count = newCount;
            // 将合并之前的列表的内存数据往后移动 addedCount,为新的列表腾出位置
            memmove(array()->lists + addedCount,
                    array()->lists,
                    oldCount * sizeof(array()->lists[0]));
            // 将新的添加的列表的内存,拷贝到array()->lists腾出来的位置
            // 所以最后添加的方法,会被放到方法列表的首位置,这就解释了在本类和分类中,如果存在同一个方法,会优先调用分类中的方法,如果这个方法在多个分类中都存在,则取决于编译的顺序,最后编译的分类,则最先调用该分类中的方法
            memcpy(array()->lists,
                   addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
        else if (!list  &&  addedCount == 1) {
            // 0 lists -> 1 list
            list = addedLists[0];
        } 
        else {
            // 1 list -> many lists
            List* oldList = list;
            uint32_t oldCount = oldList ? 1 : 0;
            uint32_t newCount = oldCount + addedCount;
            setArray((array_t *)malloc(array_t::byteSize(newCount)));
            array()->count = newCount;
            if (oldList) array()->lists[addedCount] = oldList;
            memcpy(array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
    }


void    *memcpy(void *__dst, const void *__src, size_t __n);
void    *memmove(void *__dst, const void *__src, size_t __len);

Category和Class Extension的区别是什么

  • Class Extension在编译的时候,它的数据已经包含在类信息中
  • Category是在运行时,才会将数据合并类信息中

Category中load方法什么调用?load方法能继承吗?

  • load方法在rumtime加载类,分类的时候调用
  • 每个类,分类的+load方法在程序运行过程中只调用一次
  • load方法可以继承,但是在一般情况下不会主动调用load方法,都是让系统自动调用

+load方法调用顺序

  • 先调用类的+load方法
    • 按照编译先后顺序调用(先编译,先调用)
    • 调用子类的+load之前会先调用父类的+load
  • 再调用分类的+load
    • 按照编译先后顺序调用(先编译,先调用)

查看objc源码,证明调用顺序

  • objc源码解读过程:objc-os.mm
    • _objc_init
    • load_images
    • prepare_load_methods
    • schedule_class_load
    • add_class_to_loadable_list
    • add_category_to_loadable_list
    • call_load_methods
    • call_class_loads
    • call_category_loads
    • (*load_method)(cls, SEL_load)
  • +load方法是根据方法地址直接调用,并不是经过objc_msgSend函数调用
void _objc_init(void)
{
    static bool initialized = false;
    if (initialized) return;
    initialized = true;
    
    // fixme defer initialization until an objc-using image is found?
    environ_init();
    tls_init();
    static_init();
    lock_init();
    exception_init();

    _dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
void
load_images(const char *path __unused, const struct mach_header *mh)
{
    // Return without taking locks if there are no +load methods here.
    if (!hasLoadMethods((const headerType *)mh)) return;

    recursive_mutex_locker_t lock(loadMethodLock);

    // Discover load methods
    // 获取 load 方法
    {
        rwlock_writer_t lock2(runtimeLock);
        prepare_load_methods((const headerType *)mh);
    }

    // Call +load methods (without runtimeLock - re-entrant)
    // 执行所有的load方法
    call_load_methods();
}

void prepare_load_methods(const headerType *mhdr)
{
    size_t count, i;

    runtimeLock.assertWriting();
    // 找到所有类的 load 方法
    classref_t *classlist = 
        _getObjc2NonlazyClassList(mhdr, &count);
    
    for (i = 0; i < count; i++) {
        schedule_class_load(remapClass(classlist[i]));
    }
    // 找到所有类的分类 load 方法
   // 从小到大的方式编译,意味着先编译的先执行
    category_t **categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
    for (i = 0; i < count; i++) {
        category_t *cat = categorylist[i];
        Class cls = remapClass(cat->cls);
        if (!cls) continue;  // category for ignored weak-linked class
        realizeClass(cls);
        assert(cls->ISA()->isRealized());
        add_category_to_loadable_list(cat);
    }
}
static void schedule_class_load(Class cls)
{
    if (!cls) return;
    assert(cls->isRealized());  // _read_images should realize

    if (cls->data()->flags & RW_LOADED) return;

    // Ensure superclass-first ordering
    // 递归获取父类的load方法
    schedule_class_load(cls->superclass);
    // 将cls添加到loadable_classes数组的最后面
    add_class_to_loadable_list(cls);
    cls->setInfo(RW_LOADED); 
}

void call_load_methods(void)
{
    static bool loading = NO;
    bool more_categories;

    loadMethodLock.assertLocked();

    // Re-entrant calls do nothing; the outermost call will finish the job.
    if (loading) return;
    loading = YES;

    void *pool = objc_autoreleasePoolPush();

    do {
        // 1. Repeatedly call class +loads until there aren't any more
        // 1. 先执行类中的load方法
        while (loadable_classes_used > 0) {
            call_class_loads();
        }

        // 2. Call category +loads ONCE
        // 2. 执行分类中的load方法
        more_categories = call_category_loads();

        // 3. Run more +loads if there are classes OR more untried categories
    } while (loadable_classes_used > 0  ||  more_categories);

    objc_autoreleasePoolPop(pool);

    loading = NO;
}

static void call_class_loads(void)
{
    int i;
    
    // Detach current loadable list.
    struct loadable_class *classes = loadable_classes;
    int used = loadable_classes_used;
    loadable_classes = nil;
    loadable_classes_allocated = 0;
    loadable_classes_used = 0;
    
    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Class cls = classes[i].cls;
        load_method_t load_method = (load_method_t)classes[i].method;
        if (!cls) continue; 

        if (PrintLoading) {
            _objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
        }
        // 执行load方法,call_category_loads中类似
        (*load_method)(cls, SEL_load);
    }
    
    // Destroy the detached list.
    if (classes) free(classes);
}

+initialize方法

  • +inittialize方法在类第一次接收到消息时调用,比如[Person alloc]init],调用 alloc方法时就相当于``objc_msgsend([Person class], @selector(alloc)), 接收了消息,此时就会调用initiallize
  • 调用顺序
    • 先调用父类的+initialize,再调用子类的+initialize(相当于先初始化父类,再初始化子类,每个类只会初始化一次)
  • +initialize+load的最大区别是,+initialize是通过objc_msgSend进行调用
    • 如果子类没有实现+initialize会调用父类的+initialize(所以父类的+initialize可能会被调用多次)
    • 如果分类实现了+initialize,就会覆盖类本身的+initialize调用
  • 伪代码如下:
       BOOL sutdentInitialized = NO;
        BOOL personInitialized = NO;
        BOOL teacherInitialized = NO;
        
        [MJStudent alloc];
        
        if (!sutdentInitialized) {
            if (!personInitialized) {
                objc_msgSend([MJPerson class], @selector(initialize));
                personInitialized = YES;
            }

            objc_msgSend([MJStudent class], @selector(initialize));
            sutdentInitialized = YES;
        }
        
        [MJTeacher alloc];
        
        if (!teacherInitialized) {
            if (!personInitialized) {
                objc_msgSend([MJPerson class], @selector(initialize));
                personInitialized = YES;
            }

            objc_msgSend([MJTeacher class], @selector(initialize));
            teacherInitialized = YES;
        }
        ===== 等价于======
        // MJPerson (Test2) +initialize
        objc_msgSend([MJPerson class], @selector(initialize));
        // MJPerson (Test2) +initialize
        objc_msgSend([MJStudent class], @selector(initialize));
        // MJPerson (Test2) +initialize
        objc_msgSend([MJTeacher class], @selector(initialize));
         // isa -> 类对象\元类对象,寻找方法,调用
        // superclass -> 类对象\元类对象,寻找方法,调用
        // superclass -> 类对象\元类对象,寻找方法,调用
        // superclass -> 类对象\元类对象,寻找方法,调用
        // superclass -> 类对象\元类对象,寻找方法,调用

objc4源码解读过程

  • objc-msg-arm64.s
    • objc_msgSend
  • objc-runtime-new.mm
    • class_getInstanceMethod
    • lookUpImpOrNil
    • lookUpImpOrForward
    • _class_initialize
    • callInitialize
    • objc_msgSend(cls, SEL_initialize)
Method class_getInstanceMethod(Class cls, SEL sel)
{
    if (!cls  ||  !sel) return nil;

    // This deliberately avoids +initialize because it historically did so.

    // This implementation is a bit weird because it's the only place that 
    // wants a Method instead of an IMP.

#warning fixme build and search caches
        
    // Search method lists, try method resolver, etc.
    lookUpImpOrNil(cls, sel, nil, 
                   NO/*initialize*/, NO/*cache*/, YES/*resolver*/);

#warning fixme build and search caches

    return _class_getMethod(cls, sel);
}

IMP lookUpImpOrForward(Class cls, SEL sel, id inst, 
                       bool initialize, bool cache, bool resolver)
{
    IMP imp = nil;
    bool triedResolver = NO;

    runtimeLock.assertUnlocked();

    // Optimistic cache lookup
    if (cache) {
        imp = cache_getImp(cls, sel);
        if (imp) return imp;
    }

    // runtimeLock is held during isRealized and isInitialized checking
    // to prevent races against concurrent realization.

    // runtimeLock is held during method search to make
    // method-lookup + cache-fill atomic with respect to method addition.
    // Otherwise, a category could be added but ignored indefinitely because
    // the cache was re-filled with the old value after the cache flush on
    // behalf of the category.

    runtimeLock.read();

    if (!cls->isRealized()) {
        // Drop the read-lock and acquire the write-lock.
        // realizeClass() checks isRealized() again to prevent
        // a race while the lock is down.
        runtimeLock.unlockRead();
        runtimeLock.write();

        realizeClass(cls);

        runtimeLock.unlockWrite();
        runtimeLock.read();
    }
  // 如果没有初始化,就先初始化
    if (initialize  &&  !cls->isInitialized()) {
        runtimeLock.unlockRead();
        _class_initialize (_class_getNonMetaClass(cls, inst));
        runtimeLock.read();
        // If sel == initialize, _class_initialize will send +initialize and 
        // then the messenger will send +initialize again after this 
        // procedure finishes. Of course, if this is not being called 
        // from the messenger then it won't happen. 2778172
    }

    
 retry:    
    runtimeLock.assertReading();

    // Try this class's cache.

    imp = cache_getImp(cls, sel);
    if (imp) goto done;

    // Try this class's method lists.
    {
        Method meth = getMethodNoSuper_nolock(cls, sel);
        if (meth) {
            log_and_fill_cache(cls, meth->imp, sel, inst, cls);
            imp = meth->imp;
            goto done;
        }
    }

    // Try superclass caches and method lists.
    {
        unsigned attempts = unreasonableClassCount();
        for (Class curClass = cls->superclass;
             curClass != nil;
             curClass = curClass->superclass)
        {
            // Halt if there is a cycle in the superclass chain.
            if (--attempts == 0) {
                _objc_fatal("Memory corruption in class list.");
            }
            
            // Superclass cache.
            imp = cache_getImp(curClass, sel);
            if (imp) {
                if (imp != (IMP)_objc_msgForward_impcache) {
                    // Found the method in a superclass. Cache it in this class.
                    log_and_fill_cache(cls, imp, sel, inst, curClass);
                    goto done;
                }
                else {
                    // Found a forward:: entry in a superclass.
                    // Stop searching, but don't cache yet; call method 
                    // resolver for this class first.
                    break;
                }
            }
            
            // Superclass method list.
            Method meth = getMethodNoSuper_nolock(curClass, sel);
            if (meth) {
                log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
                imp = meth->imp;
                goto done;
            }
        }
    }

    // No implementation found. Try method resolver once.

    if (resolver  &&  !triedResolver) {
        runtimeLock.unlockRead();
        _class_resolveMethod(cls, sel, inst);
        runtimeLock.read();
        // Don't cache the result; we don't hold the lock so it may have 
        // changed already. Re-do the search from scratch instead.
        triedResolver = YES;
        goto retry;
    }

    // No implementation found, and method resolver didn't help. 
    // Use forwarding.

    imp = (IMP)_objc_msgForward_impcache;
    cache_fill(cls, sel, imp, inst);

 done:
    runtimeLock.unlockRead();

    return imp;
}

// 调用initialize方法
void callInitialize(Class cls)
{
    ((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize);
    asm("");
}
void _class_initialize(Class cls)
{
    assert(!cls->isMetaClass());

    Class supercls;
    bool reallyInitialize = NO;

    // Make sure super is done initializing BEFORE beginning to initialize cls.
    // See note about deadlock above.
    supercls = cls->superclass;
    // 如果父类没有初始化,则先调用父类的初始化方法
    if (supercls  &&  !supercls->isInitialized()) {
        _class_initialize(supercls);
    }
    
    // Try to atomically set CLS_INITIALIZING.
    {
        monitor_locker_t lock(classInitLock);
        if (!cls->isInitialized() && !cls->isInitializing()) {
            cls->setInitializing();
            reallyInitialize = YES;
        }
    }
    
    if (reallyInitialize) {
        // We successfully set the CLS_INITIALIZING bit. Initialize the class.
        
        // Record that we're initializing this class so we can message it.
        _setThisThreadIsInitializingClass(cls);

        if (MultithreadedForkChild) {
            // LOL JK we don't really call +initialize methods after fork().
            performForkChildInitialize(cls, supercls);
            return;
        }
        
        // Send the +initialize message.
        // Note that +initialize is sent to the superclass (again) if 
        // this class doesn't implement +initialize. 2157218
        if (PrintInitializing) {
            _objc_inform("INITIALIZE: thread %p: calling +[%s initialize]",
                         pthread_self(), cls->nameForLogging());
        }

        // Exceptions: A +initialize call that throws an exception 
        // is deemed to be a complete and successful +initialize.
        //
        // Only __OBJC2__ adds these handlers. !__OBJC2__ has a
        // bootstrapping problem of this versus CF's call to
        // objc_exception_set_functions().
#if __OBJC2__
        @try
#endif
        {
    // 调用初始化方法
            callInitialize(cls);

            if (PrintInitializing) {
                _objc_inform("INITIALIZE: thread %p: finished +[%s initialize]",
                             pthread_self(), cls->nameForLogging());
            }
        }
#if __OBJC2__
        @catch (...) {
            if (PrintInitializing) {
                _objc_inform("INITIALIZE: thread %p: +[%s initialize] "
                             "threw an exception",
                             pthread_self(), cls->nameForLogging());
            }
            @throw;
        }
        @finally
#endif
        {
            // Done initializing.
            lockAndFinishInitializing(cls, supercls);
        }
        return;
    }
    
    else if (cls->isInitializing()) {
        // We couldn't set INITIALIZING because INITIALIZING was already set.
        // If this thread set it earlier, continue normally.
        // If some other thread set it, block until initialize is done.
        // It's ok if INITIALIZING changes to INITIALIZED while we're here, 
        //   because we safely check for INITIALIZED inside the lock 
        //   before blocking.
        if (_thisThreadIsInitializingClass(cls)) {
            return;
        } else if (!MultithreadedForkChild) {
            waitForInitializeToComplete(cls);
            return;
        } else {
            // We're on the child side of fork(), facing a class that
            // was initializing by some other thread when fork() was called.
            _setThisThreadIsInitializingClass(cls);
            performForkChildInitialize(cls, supercls);
        }
    }
    
    else if (cls->isInitialized()) {
        // Set CLS_INITIALIZING failed because someone else already 
        //   initialized the class. Continue normally.
        // NOTE this check must come AFTER the ISINITIALIZING case.
        // Otherwise: Another thread is initializing this class. ISINITIALIZED 
        //   is false. Skip this clause. Then the other thread finishes 
        //   initialization and sets INITIALIZING=no and INITIALIZED=yes. 
        //   Skip the ISINITIALIZING clause. Die horribly.
        return;
    }
    
    else {
        // We shouldn't be here. 
        _objc_fatal("thread-safe class init in objc runtime is buggy!");
    }
}

load,initialize方法的区别?

  • 调用方式不同
    • load是根据函数地址直接调用
    • initialize是通过objc_msgSend调用
  • 调用时刻不同
    • load是runtime加载类,分类的时候调用(只会调用1次)
    • initialize是类第一次接收到消息的时候调用。每一个类只会initialize一次

load, initialize的调用顺序

  • load
    • 先调用类的load,先编译的类,优先调用load;调用子类的load之前,会调用父类的load
    • 再调用分类的load,先编译的分类,优先调用load
  • initialize
    • 先初始化父类
    • 再初始化子类(可能最终掉哟经父类的initialize方法)

不同分类中同名方法的调用顺序

  • 同名方法的调用顺序取决于编译的顺序,最后编译的分类,则最先调用该分类中的方法
  • objcattachLists方法可以证明
void attachLists(List* const * addedLists, uint32_t addedCount) {
        if (addedCount == 0) return;

        if (hasArray()) {
            // many lists -> many lists
            // 获取合并之前列表的数量
            uint32_t oldCount = array()->count;
            //  获取合并之后列表的数量
            uint32_t newCount = oldCount + addedCount;
            // 重新分配内存
            setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
            // 设置新的列表数量
            array()->count = newCount;
            // 将合并之前的列表的内存数据往后移动 addedCount,为新的列表腾出位置
            memmove(array()->lists + addedCount,
                    array()->lists,
                    oldCount * sizeof(array()->lists[0]));
            // 将新的添加的列表的内存,拷贝到array()->lists腾出来的位置
            // 所以最后添加的方法,会被放到方法列表的首位置,这就解释了在本类和分类中,如果存在同一个方法,会优先调用分类中的方法,如果这个方法在多个分类中都存在,则取决于编译的顺序,最后编译的分类,则最先调用该分类中的方法
            memcpy(array()->lists,
                   addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
        else if (!list  &&  addedCount == 1) {
            // 0 lists -> 1 list
            list = addedLists[0];
        } 
        else {
            // 1 list -> many lists
            List* oldList = list;
            uint32_t oldCount = oldList ? 1 : 0;
            uint32_t newCount = oldCount + addedCount;
            setArray((array_t *)malloc(array_t::byteSize(newCount)));
            array()->count = newCount;
            if (oldList) array()->lists[addedCount] = oldList;
            memcpy(array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
    }

相关文章

网友评论

      本文标题:Objective-C Category

      本文链接:https://www.haomeiwen.com/subject/xpgaxltx.html