引入包
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
pd.set_option('display.max_columns', None)
读取数据
train_data = pd.read_csv('train_all.csv',nrows=10000)
test_data = pd.read_csv('test_all.csv',nrows=100)
训练和测试数据
features_columns = [col for col in train_data.columns if col not in ['user_id','label']]
train = train_data[features_columns].values
test = test_data[features_columns].values
target =train_data['label'].values
训练集分割
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)
X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)
print(X_train.shape, y_train.shape)
print(X_test.shape, y_test.shape)
clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)
交叉验证
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)
scores = cross_val_score(clf, train, target, cv=5)
print(scores)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
指定f1 score
from sklearn import metrics
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)
scores = cross_val_score(clf, train, target, cv=5, scoring='f1_macro')
print(scores)
print("F1: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
支持的scoring有
SCORERS = dict(explained_variance=explained_variance_scorer,
r2=r2_scorer,
max_error=max_error_scorer,
neg_median_absolute_error=neg_median_absolute_error_scorer,
neg_mean_absolute_error=neg_mean_absolute_error_scorer,
neg_mean_absolute_percentage_error=neg_mean_absolute_percentage_error_scorer, # noqa
neg_mean_squared_error=neg_mean_squared_error_scorer,
neg_mean_squared_log_error=neg_mean_squared_log_error_scorer,
neg_root_mean_squared_error=neg_root_mean_squared_error_scorer,
neg_mean_poisson_deviance=neg_mean_poisson_deviance_scorer,
neg_mean_gamma_deviance=neg_mean_gamma_deviance_scorer,
accuracy=accuracy_scorer,
top_k_accuracy=top_k_accuracy_scorer,
roc_auc=roc_auc_scorer,
roc_auc_ovr=roc_auc_ovr_scorer,
roc_auc_ovo=roc_auc_ovo_scorer,
roc_auc_ovr_weighted=roc_auc_ovr_weighted_scorer,
roc_auc_ovo_weighted=roc_auc_ovo_weighted_scorer,
balanced_accuracy=balanced_accuracy_scorer,
average_precision=average_precision_scorer,
neg_log_loss=neg_log_loss_scorer,
neg_brier_score=neg_brier_score_scorer,
# Cluster metrics that use supervised evaluation
adjusted_rand_score=adjusted_rand_scorer,
rand_score=rand_scorer,
homogeneity_score=homogeneity_scorer,
completeness_score=completeness_scorer,
v_measure_score=v_measure_scorer,
mutual_info_score=mutual_info_scorer,
adjusted_mutual_info_score=adjusted_mutual_info_scorer,
normalized_mutual_info_score=normalized_mutual_info_scorer,
fowlkes_mallows_score=fowlkes_mallows_scorer)
手动交叉验证
import numpy as np
from sklearn.model_selection import KFold
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)
kf = KFold(n_splits=5)
for k, (train_index, test_index) in enumerate(kf.split(train)):
X_train, X_test, y_train, y_test = train[train_index], train[test_index], target[train_index], target[test_index]
clf = clf.fit(X_train, y_train)
print(k, clf.score(X_test, y_test))
StratifiedKFold切分数据(label均分)
from sklearn.model_selection import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)
skf = StratifiedKFold(n_splits=5)
for k, (train_index, test_index) in enumerate(skf.split(train, target)):
X_train, X_test, y_train, y_test = train[train_index], train[test_index], target[train_index], target[test_index]
clf = clf.fit(X_train, y_train)
print(k, clf.score(X_test, y_test))
参数搜索
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.ensemble import RandomForestClassifier
# Split the dataset in two equal parts
X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.5, random_state=0)
# model
clf = RandomForestClassifier(n_jobs=-1)
# Set the parameters by cross-validation
tuned_parameters = {
'n_estimators': [50, 100, 200]
# ,'criterion': ['gini', 'entropy']
# ,'max_depth': [2, 5]
# ,'max_features': ['log2', 'sqrt', 'int']
# ,'bootstrap': [True, False]
# ,'warm_start': [True, False]
}
scores = ['precision']
for score in scores:
print("# Tuning hyper-parameters for %s" % score)
print()
clf = GridSearchCV(clf, tuned_parameters, cv=5,
scoring='%s_macro' % score)
clf.fit(X_train, y_train)
print("Best parameters set found on development set:")
print()
print(clf.best_params_)
print()
print("Grid scores on development set:")
print()
means = clf.cv_results_['mean_test_score']
stds = clf.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, clf.cv_results_['params']):
print("%0.3f (+/-%0.03f) for %r"
% (mean, std * 2, params))
print()
print("Detailed classification report:")
print()
print("The model is trained on the full development set.")
print("The scores are computed on the full evaluation set.")
print()
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
print()
模糊矩阵
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.ensemble import RandomForestClassifier
# label name
class_names = ['no-repeat', 'repeat']
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
clf = RandomForestClassifier(n_jobs=-1)
y_pred = clf.fit(X_train, y_train).predict(X_test)
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,
title='Confusion matrix, without normalization')
# Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
title='Normalized confusion matrix')
plt.show()
from sklearn.metrics import classification_report
from sklearn.ensemble import RandomForestClassifier
# label name
class_names = ['no-repeat', 'repeat']
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
clf = RandomForestClassifier(n_jobs=-1)
y_pred = clf.fit(X_train, y_train).predict(X_test)
print(classification_report(y_test, y_pred, target_names=class_names))
不同模型
LR
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)
clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X_train, y_train)
clf.score(X_test, y_test)
KNN
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)
clf = KNeighborsClassifier(n_neighbors=3).fit(X_train, y_train)
clf.score(X_test, y_test)
GaussianNB
from sklearn.naive_bayes import GaussianNB
from sklearn.preprocessing import StandardScaler
stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)
clf = GaussianNB().fit(X_train, y_train)
clf.score(X_test, y_test)
Tree
from sklearn import tree
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)
bagging
from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5)
clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)
随机森林
from sklearn.ensemble import RandomForestClassifier
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = clf = RandomForestClassifier(n_estimators=10, max_depth=3, min_samples_split=12, random_state=0)
clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)
ExTree
from sklearn.ensemble import ExtraTreesClassifier
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = ExtraTreesClassifier(n_estimators=10, max_depth=None, min_samples_split=2, random_state=0)
clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)
AdaBoost
from sklearn.ensemble import AdaBoostClassifier
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = AdaBoostClassifier(n_estimators=10)
clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)
GBDT
from sklearn.ensemble import GradientBoostingClassifier
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, max_depth=1, random_state=0)
clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)
VOTE
from sklearn import datasets
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.preprocessing import StandardScaler
stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)
y = target
clf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=1)
clf2 = RandomForestClassifier(n_estimators=50, random_state=1)
clf3 = GaussianNB()
eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')
for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']):
scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
lgb
import lightgbm
X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)
X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)
clf = lightgbm
train_matrix = clf.Dataset(X_train, label=y_train)
test_matrix = clf.Dataset(X_test, label=y_test)
params = {
'boosting_type': 'gbdt',
#'boosting_type': 'dart',
'objective': 'multiclass',
'metric': 'multi_logloss',
'min_child_weight': 1.5,
'num_leaves': 2**5,
'lambda_l2': 10,
'subsample': 0.7,
'colsample_bytree': 0.7,
'colsample_bylevel': 0.7,
'learning_rate': 0.03,
'tree_method': 'exact',
'seed': 2017,
"num_class": 2,
'silent': True,
}
num_round = 10000
early_stopping_rounds = 100
model = clf.train(params,
train_matrix,
num_round,
valid_sets=test_matrix,
early_stopping_rounds=early_stopping_rounds)
pre= model.predict(X_valid,num_iteration=model.best_iteration)
xgb
import xgboost
X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)
X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)
clf = xgboost
train_matrix = clf.DMatrix(X_train, label=y_train, missing=-1)
test_matrix = clf.DMatrix(X_test, label=y_test, missing=-1)
z = clf.DMatrix(X_valid, label=y_valid, missing=-1)
params = {'booster': 'gbtree',
'objective': 'multi:softprob',
'eval_metric': 'mlogloss',
'gamma': 1,
'min_child_weight': 1.5,
'max_depth': 5,
'lambda': 100,
'subsample': 0.7,
'colsample_bytree': 0.7,
'colsample_bylevel': 0.7,
'eta': 0.03,
'tree_method': 'exact',
'seed': 2017,
"num_class": 2
}
num_round = 10000
early_stopping_rounds = 100
watchlist = [(train_matrix, 'train'),
(test_matrix, 'eval')
]
model = clf.train(params,
train_matrix,
num_boost_round=num_round,
evals=watchlist,
early_stopping_rounds=early_stopping_rounds
)
pre = model.predict(z,ntree_limit=model.best_ntree_limit)
Stacking,Bootstrap,Bagging技术实践(手动封装)
"""
导入相关包
"""
import pandas as pd
import numpy as np
import lightgbm as lgb
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
class SBBTree():
"""
SBBTree
Stacking,Bootstap,Bagging
"""
def __init__(
self,
params,
stacking_num,
bagging_num,
bagging_test_size,
num_boost_round,
early_stopping_rounds
):
"""
Initializes the SBBTree.
Args:
params : lgb params.
stacking_num : k_flod stacking.
bagging_num : bootstrap num.
bagging_test_size : bootstrap sample rate.
num_boost_round : boost num.
early_stopping_rounds : early_stopping_rounds.
"""
self.params = params
self.stacking_num = stacking_num
self.bagging_num = bagging_num
self.bagging_test_size = bagging_test_size
self.num_boost_round = num_boost_round
self.early_stopping_rounds = early_stopping_rounds
self.model = lgb
self.stacking_model = []
self.bagging_model = []
def fit(self, X, y):
""" fit model. """
if self.stacking_num > 1:
layer_train = np.zeros((X.shape[0], 2))
self.SK = StratifiedKFold(n_splits=self.stacking_num, shuffle=True, random_state=1)
for k,(train_index, test_index) in enumerate(self.SK.split(X, y)):
X_train = X[train_index]
y_train = y[train_index]
X_test = X[test_index]
y_test = y[test_index]
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
gbm = lgb.train(self.params,
lgb_train,
num_boost_round=self.num_boost_round,
valid_sets=lgb_eval,
early_stopping_rounds=self.early_stopping_rounds)
self.stacking_model.append(gbm)
pred_y = gbm.predict(X_test, num_iteration=gbm.best_iteration)
layer_train[test_index, 1] = pred_y
X = np.hstack((X, layer_train[:,1].reshape((-1,1))))
else:
pass
for bn in range(self.bagging_num):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.bagging_test_size, random_state=bn)
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
gbm = lgb.train(self.params,
lgb_train,
num_boost_round=10000,
valid_sets=lgb_eval,
early_stopping_rounds=200)
self.bagging_model.append(gbm)
def predict(self, X_pred):
""" predict test data. """
if self.stacking_num > 1:
test_pred = np.zeros((X_pred.shape[0], self.stacking_num))
for sn,gbm in enumerate(self.stacking_model):
pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration)
test_pred[:, sn] = pred
X_pred = np.hstack((X_pred, test_pred.mean(axis=1).reshape((-1,1))))
else:
pass
for bn,gbm in enumerate(self.bagging_model):
pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration)
if bn == 0:
pred_out=pred
else:
pred_out+=pred
return pred_out/self.bagging_num
"""
TEST CODE
"""
from sklearn.datasets import make_classification
from sklearn.datasets import load_breast_cancer
from sklearn.datasets import make_gaussian_quantiles
from sklearn import metrics
from sklearn.metrics import f1_score
# X, y = make_classification(n_samples=1000, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=1)
X, y = make_gaussian_quantiles(mean=None, cov=1.0, n_samples=1000, n_features=50, n_classes=2, shuffle=True, random_state=2)
# data = load_breast_cancer()
# X, y = data.data, data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)
params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'num_leaves': 9,
'learning_rate': 0.03,
'feature_fraction_seed': 2,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'min_data': 20,
'min_hessian': 1,
'verbose': -1,
'silent': 0
}
# test 1
model = SBBTree(params=params, stacking_num=2, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)
model.fit(X,y)
X_pred = X[0].reshape((1,-1))
pred=model.predict(X_pred)
print('pred')
print(pred)
print('TEST 1 ok')
# test 1
model = SBBTree(params, stacking_num=1, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)
model.fit(X_train,y_train)
pred1=model.predict(X_test)
# test 2
model = SBBTree(params, stacking_num=1, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)
model.fit(X_train,y_train)
pred2=model.predict(X_test)
# test 3
model = SBBTree(params, stacking_num=5, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)
model.fit(X_train,y_train)
pred3=model.predict(X_test)
# test 4
model = SBBTree(params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)
model.fit(X_train,y_train)
pred4=model.predict(X_test)
fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred1, pos_label=2)
print('auc: ',metrics.auc(fpr, tpr))
fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred2, pos_label=2)
print('auc: ',metrics.auc(fpr, tpr))
fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred3, pos_label=2)
print('auc: ',metrics.auc(fpr, tpr))
fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred4, pos_label=2)
print('auc: ',metrics.auc(fpr, tpr))
# auc: 0.7281621243885396
# auc: 0.7710471146419509
# auc: 0.7894369046305492
# auc: 0.8084519474787597
网友评论