美文网首页
2022-04-25 机器学习模型训练

2022-04-25 机器学习模型训练

作者: 破阵子沙场秋点兵 | 来源:发表于2022-04-25 20:07 被阅读0次

引入包

import pandas as pd
import numpy as np

import warnings
warnings.filterwarnings("ignore") 

pd.set_option('display.max_columns', None)

读取数据

train_data = pd.read_csv('train_all.csv',nrows=10000)
test_data = pd.read_csv('test_all.csv',nrows=100)

训练和测试数据

features_columns = [col for col in train_data.columns if col not in ['user_id','label']]
train = train_data[features_columns].values
test = test_data[features_columns].values
target =train_data['label'].values

训练集分割

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)
X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)

print(X_train.shape, y_train.shape)
print(X_test.shape, y_test.shape)

clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test) 

交叉验证

from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)
scores = cross_val_score(clf, train, target, cv=5)
print(scores)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) 

指定f1 score

from sklearn import metrics
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)
scores = cross_val_score(clf, train, target, cv=5, scoring='f1_macro')
print(scores)  
print("F1: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))

支持的scoring有

SCORERS = dict(explained_variance=explained_variance_scorer,
               r2=r2_scorer,
               max_error=max_error_scorer,
               neg_median_absolute_error=neg_median_absolute_error_scorer,
               neg_mean_absolute_error=neg_mean_absolute_error_scorer,
               neg_mean_absolute_percentage_error=neg_mean_absolute_percentage_error_scorer,  # noqa
               neg_mean_squared_error=neg_mean_squared_error_scorer,
               neg_mean_squared_log_error=neg_mean_squared_log_error_scorer,
               neg_root_mean_squared_error=neg_root_mean_squared_error_scorer,
               neg_mean_poisson_deviance=neg_mean_poisson_deviance_scorer,
               neg_mean_gamma_deviance=neg_mean_gamma_deviance_scorer,
               accuracy=accuracy_scorer,
               top_k_accuracy=top_k_accuracy_scorer,
               roc_auc=roc_auc_scorer,
               roc_auc_ovr=roc_auc_ovr_scorer,
               roc_auc_ovo=roc_auc_ovo_scorer,
               roc_auc_ovr_weighted=roc_auc_ovr_weighted_scorer,
               roc_auc_ovo_weighted=roc_auc_ovo_weighted_scorer,
               balanced_accuracy=balanced_accuracy_scorer,
               average_precision=average_precision_scorer,
               neg_log_loss=neg_log_loss_scorer,
               neg_brier_score=neg_brier_score_scorer,
               # Cluster metrics that use supervised evaluation
               adjusted_rand_score=adjusted_rand_scorer,
               rand_score=rand_scorer,
               homogeneity_score=homogeneity_scorer,
               completeness_score=completeness_scorer,
               v_measure_score=v_measure_scorer,
               mutual_info_score=mutual_info_scorer,
               adjusted_mutual_info_score=adjusted_mutual_info_scorer,
               normalized_mutual_info_score=normalized_mutual_info_scorer,
               fowlkes_mallows_score=fowlkes_mallows_scorer)

手动交叉验证

import numpy as np
from sklearn.model_selection import KFold
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)
kf = KFold(n_splits=5)
for k, (train_index, test_index) in enumerate(kf.split(train)):
    X_train, X_test, y_train, y_test = train[train_index], train[test_index], target[train_index], target[test_index]
    clf = clf.fit(X_train, y_train)
    print(k, clf.score(X_test, y_test))

StratifiedKFold切分数据(label均分)

from sklearn.model_selection import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)
skf = StratifiedKFold(n_splits=5)
for k, (train_index, test_index) in enumerate(skf.split(train, target)):
    X_train, X_test, y_train, y_test = train[train_index], train[test_index], target[train_index], target[test_index]
    clf = clf.fit(X_train, y_train)
    print(k, clf.score(X_test, y_test))

参数搜索

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.ensemble import RandomForestClassifier


# Split the dataset in two equal parts
X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.5, random_state=0)

# model 
clf = RandomForestClassifier(n_jobs=-1)

# Set the parameters by cross-validation

tuned_parameters = {
                    'n_estimators': [50, 100, 200]
#                     ,'criterion': ['gini', 'entropy']
#                     ,'max_depth': [2, 5]
#                     ,'max_features': ['log2', 'sqrt', 'int']
#                     ,'bootstrap': [True, False]
#                     ,'warm_start': [True, False]
                    }

scores = ['precision']

for score in scores:
    print("# Tuning hyper-parameters for %s" % score)
    print()

    clf = GridSearchCV(clf, tuned_parameters, cv=5,
                       scoring='%s_macro' % score)
    clf.fit(X_train, y_train)

    print("Best parameters set found on development set:")
    print()
    print(clf.best_params_)
    print()
    print("Grid scores on development set:")
    print()
    means = clf.cv_results_['mean_test_score']
    stds = clf.cv_results_['std_test_score']
    for mean, std, params in zip(means, stds, clf.cv_results_['params']):
        print("%0.3f (+/-%0.03f) for %r"
              % (mean, std * 2, params))
    print()

    print("Detailed classification report:")
    print()
    print("The model is trained on the full development set.")
    print("The scores are computed on the full evaluation set.")
    print()
    y_true, y_pred = y_test, clf.predict(X_test)
    print(classification_report(y_true, y_pred))
    print()

模糊矩阵

import itertools
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.ensemble import RandomForestClassifier

# label name
class_names = ['no-repeat', 'repeat']

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)

# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
clf = RandomForestClassifier(n_jobs=-1)
y_pred = clf.fit(X_train, y_train).predict(X_test)


def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')

    print(cm)

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)

    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.tight_layout()


# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)

# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,
                      title='Confusion matrix, without normalization')

# Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
                      title='Normalized confusion matrix')

plt.show()
from sklearn.metrics import classification_report
from sklearn.ensemble import RandomForestClassifier

# label name
class_names = ['no-repeat', 'repeat']

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)

# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
clf = RandomForestClassifier(n_jobs=-1)
y_pred = clf.fit(X_train, y_train).predict(X_test)

print(classification_report(y_test, y_pred, target_names=class_names))

不同模型

LR

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler

stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)

clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X_train, y_train)
clf.score(X_test, y_test)

KNN

from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler

stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)

clf = KNeighborsClassifier(n_neighbors=3).fit(X_train, y_train)
clf.score(X_test, y_test)

GaussianNB

from sklearn.naive_bayes import GaussianNB
from sklearn.preprocessing import StandardScaler

stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)

clf = GaussianNB().fit(X_train, y_train)
clf.score(X_test, y_test)

Tree

from sklearn import tree

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)

clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

bagging

from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5)

clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

随机森林

from sklearn.ensemble import RandomForestClassifier

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = clf = RandomForestClassifier(n_estimators=10, max_depth=3, min_samples_split=12, random_state=0)

clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

ExTree

from sklearn.ensemble import ExtraTreesClassifier

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = ExtraTreesClassifier(n_estimators=10, max_depth=None, min_samples_split=2, random_state=0)

clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

AdaBoost

from sklearn.ensemble import AdaBoostClassifier

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = AdaBoostClassifier(n_estimators=10)

clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

GBDT

from sklearn.ensemble import GradientBoostingClassifier

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
clf = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, max_depth=1, random_state=0)

clf = clf.fit(X_train, y_train)
clf.score(X_test, y_test)

VOTE

from sklearn import datasets
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.preprocessing import StandardScaler

stdScaler = StandardScaler()
X = stdScaler.fit_transform(train)
y = target


clf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=1)
clf2 = RandomForestClassifier(n_estimators=50, random_state=1)
clf3 = GaussianNB()

eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')

for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']):
    scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

lgb

import lightgbm

X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)
X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)

clf = lightgbm

train_matrix = clf.Dataset(X_train, label=y_train)
test_matrix = clf.Dataset(X_test, label=y_test)
params = {
          'boosting_type': 'gbdt',
          #'boosting_type': 'dart',
          'objective': 'multiclass',
          'metric': 'multi_logloss',
          'min_child_weight': 1.5,
          'num_leaves': 2**5,
          'lambda_l2': 10,
          'subsample': 0.7,
          'colsample_bytree': 0.7,
          'colsample_bylevel': 0.7,
          'learning_rate': 0.03,
          'tree_method': 'exact',
          'seed': 2017,
          "num_class": 2,
          'silent': True,
          }
num_round = 10000
early_stopping_rounds = 100
model = clf.train(params, 
                  train_matrix,
                  num_round,
                  valid_sets=test_matrix,
                  early_stopping_rounds=early_stopping_rounds)
pre= model.predict(X_valid,num_iteration=model.best_iteration)

xgb

import xgboost

X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)
X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)

clf = xgboost

train_matrix = clf.DMatrix(X_train, label=y_train, missing=-1)
test_matrix = clf.DMatrix(X_test, label=y_test, missing=-1)
z = clf.DMatrix(X_valid, label=y_valid, missing=-1)
params = {'booster': 'gbtree',
          'objective': 'multi:softprob',
          'eval_metric': 'mlogloss',
          'gamma': 1,
          'min_child_weight': 1.5,
          'max_depth': 5,
          'lambda': 100,
          'subsample': 0.7,
          'colsample_bytree': 0.7,
          'colsample_bylevel': 0.7,
          'eta': 0.03,
          'tree_method': 'exact',
          'seed': 2017,
          "num_class": 2
          }

num_round = 10000
early_stopping_rounds = 100
watchlist = [(train_matrix, 'train'),
             (test_matrix, 'eval')
             ]

model = clf.train(params,
                  train_matrix,
                  num_boost_round=num_round,
                  evals=watchlist,
                  early_stopping_rounds=early_stopping_rounds
                  )
pre = model.predict(z,ntree_limit=model.best_ntree_limit)

Stacking,Bootstrap,Bagging技术实践(手动封装)

"""
    导入相关包
"""
import pandas as pd
import numpy as np
import lightgbm as lgb
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold

class SBBTree():
    """
        SBBTree
        Stacking,Bootstap,Bagging
    """
    def __init__(
                    self, 
                    params,
                    stacking_num,
                    bagging_num,
                    bagging_test_size,
                    num_boost_round,
                    early_stopping_rounds
                ):
        """
            Initializes the SBBTree.
            Args:
              params : lgb params.
              stacking_num : k_flod stacking.
              bagging_num : bootstrap num.
              bagging_test_size : bootstrap sample rate.
              num_boost_round : boost num.
              early_stopping_rounds : early_stopping_rounds.
        """
        self.params = params
        self.stacking_num = stacking_num
        self.bagging_num = bagging_num
        self.bagging_test_size = bagging_test_size
        self.num_boost_round = num_boost_round
        self.early_stopping_rounds = early_stopping_rounds

        self.model = lgb
        self.stacking_model = []
        self.bagging_model = []

    def fit(self, X, y):
        """ fit model. """
        if self.stacking_num > 1:
            layer_train = np.zeros((X.shape[0], 2))
            self.SK = StratifiedKFold(n_splits=self.stacking_num, shuffle=True, random_state=1)
            for k,(train_index, test_index) in enumerate(self.SK.split(X, y)):
                X_train = X[train_index]
                y_train = y[train_index]
                X_test = X[test_index]
                y_test = y[test_index]

                lgb_train = lgb.Dataset(X_train, y_train)
                lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)

                gbm = lgb.train(self.params,
                            lgb_train,
                            num_boost_round=self.num_boost_round,
                            valid_sets=lgb_eval,
                            early_stopping_rounds=self.early_stopping_rounds)

                self.stacking_model.append(gbm)

                pred_y = gbm.predict(X_test, num_iteration=gbm.best_iteration)
                layer_train[test_index, 1] = pred_y

            X = np.hstack((X, layer_train[:,1].reshape((-1,1)))) 
        else:
            pass
        for bn in range(self.bagging_num):
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.bagging_test_size, random_state=bn)

            lgb_train = lgb.Dataset(X_train, y_train)
            lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)

            gbm = lgb.train(self.params,
                        lgb_train,
                        num_boost_round=10000,
                        valid_sets=lgb_eval,
                        early_stopping_rounds=200)

            self.bagging_model.append(gbm)

    def predict(self, X_pred):
        """ predict test data. """
        if self.stacking_num > 1:
            test_pred = np.zeros((X_pred.shape[0], self.stacking_num))
            for sn,gbm in enumerate(self.stacking_model):
                pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration)
                test_pred[:, sn] = pred
            X_pred = np.hstack((X_pred, test_pred.mean(axis=1).reshape((-1,1))))  
        else:
            pass 
        for bn,gbm in enumerate(self.bagging_model):
            pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration)
            if bn == 0:
                pred_out=pred
            else:
                pred_out+=pred
        return pred_out/self.bagging_num
"""
    TEST CODE
"""
from sklearn.datasets import make_classification
from sklearn.datasets import load_breast_cancer
from sklearn.datasets import make_gaussian_quantiles
from sklearn import metrics
from sklearn.metrics import f1_score
# X, y = make_classification(n_samples=1000, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=1)
X, y = make_gaussian_quantiles(mean=None, cov=1.0, n_samples=1000, n_features=50, n_classes=2, shuffle=True, random_state=2)
# data = load_breast_cancer()
# X, y = data.data, data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)
params = {
        'task': 'train',
        'boosting_type': 'gbdt',
        'objective': 'binary',
        'metric': 'auc',
        'num_leaves': 9,
        'learning_rate': 0.03,
        'feature_fraction_seed': 2,
        'feature_fraction': 0.9,
        'bagging_fraction': 0.8,
        'bagging_freq': 5,
        'min_data': 20,
        'min_hessian': 1,
        'verbose': -1,
        'silent': 0
        }
# test 1
model = SBBTree(params=params, stacking_num=2, bagging_num=1,  bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)
model.fit(X,y)
X_pred = X[0].reshape((1,-1))
pred=model.predict(X_pred)
print('pred')
print(pred)
print('TEST 1 ok')


# test 1
model = SBBTree(params, stacking_num=1, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)
model.fit(X_train,y_train)
pred1=model.predict(X_test)

# test 2 
model = SBBTree(params, stacking_num=1, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)
model.fit(X_train,y_train)
pred2=model.predict(X_test)

# test 3 
model = SBBTree(params, stacking_num=5, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)
model.fit(X_train,y_train)
pred3=model.predict(X_test)

# test 4 
model = SBBTree(params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)
model.fit(X_train,y_train)
pred4=model.predict(X_test)

fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred1, pos_label=2)
print('auc: ',metrics.auc(fpr, tpr))

fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred2, pos_label=2)
print('auc: ',metrics.auc(fpr, tpr))

fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred3, pos_label=2)
print('auc: ',metrics.auc(fpr, tpr))

fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred4, pos_label=2)
print('auc: ',metrics.auc(fpr, tpr))


# auc:  0.7281621243885396
# auc:  0.7710471146419509
# auc:  0.7894369046305492
# auc:  0.8084519474787597

相关文章

  • 2022-04-25 机器学习模型训练

    引入包 读取数据 训练和测试数据 训练集分割 交叉验证 指定f1 score 支持的scoring有 手动交叉验证...

  • 客户分群-聚类算法

    机器学习算法分类 有监督学习 有训练样本 分类模型 预测模型 无监督学习 无训练样本 关联模型 聚类模型 聚类算法...

  • 1.1深度学习概述

    机器学习 Machine Learning 机器学习是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参...

  • 从机器学习中领悟写作训练

    最近我开始接触机器学习方面的内容,让我对写作训练有一些顿悟。 机器学习就是通过海量的数据,训练出模型,然后用模型来...

  • 机器学习ML-策略1-Machine Learning-Stra

    机器学习ML - Strategy 当我们在开发机器学习算法和训练时,我们发现自己的算法和训练模型达到了90%,但...

  • 04-CoreML创建图像分类器模型

    训练机器学习模型来对图像进行分类。 概览 图像分类器是一种机器学习模型,经过训练后,能够用来识别图像。在您提供一张...

  • Create ML - 图像分类(创建图像分类模型)

    训练一个机器学习模型来实现图像分类。 1.概述 图像分类器是一个被训练用来识别图像的机器学习模型。当你给他一个图像...

  • 几个概念

    机器学习是什么?简单地讲,机器学习是给定输入x,通过模型的训练获取所需的输出y,也即训练出函数y(x) 训练集...

  • 基于sklearn的集成分类器

    理论 集成模型 集成分类器模型是综合考虑多种机器学习模型的训练结果,做出分类决策的分类器模型 投票式:平行训练多种...

  • 机器学习项目 - 预测住房价格 (2)

    上篇整理了「数据查看和分析」、「机器学习算法的数据准备」,这篇介绍「选择和训练模型」。 选择和训练模型 评估训练集...

网友评论

      本文标题:2022-04-25 机器学习模型训练

      本文链接:https://www.haomeiwen.com/subject/xrkqyrtx.html